Intracellular calcium oscillation in cultured rat hippocampal neurons: a model for glutamatergic neurotransmission. 1996

T Tanaka, and H Saito, and N Matsuki
Department of Chemical Pharmacology, University of Tokyo, Japan.

Neurons can form a synaptic network in culture and show spontaneous oscillation of intracellular Ca2+ concentration ([Ca2+]i). In the present study, spontaneous oscillation of [Ca2+]i was characterized in cultured hippocampal neurons. The oscillation was blocked completely by tetrodotoxin, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and nicardipine, while DL-2-amino-5-phosphonovaleric acid (APV) showed only a partial depression of the increase in [Ca2+]i. These results suggest that the oscillation in [Ca2+]i is mainly mediated by non-N-methyl-D-aspartate (NMDA) type glutamatergic transmission. The oscillation of [Ca2+]i may be a good model for analyzing glutamatergic transmission and synapse formation.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009529 Nicardipine A potent calcium channel blockader with marked vasodilator action. It has antihypertensive properties and is effective in the treatment of angina and coronary spasms without showing cardiodepressant effects. It has also been used in the treatment of asthma and enhances the action of specific antineoplastic agents. Antagonil,Cardene,Cardene I.V.,Cardene SR,Dagan,Flusemide,Lecibral,Lincil,Loxen,Lucenfal,Nicardipine Hydrochloride,Nicardipine LA,Nicardipino Ratiopharm,Nicardipino Seid,Perdipine,Ridene,Vasonase,Y-93,Hydrochloride, Nicardipine,LA, Nicardipine,Y 93,Y93
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu

Related Publications

T Tanaka, and H Saito, and N Matsuki
June 2005, Sheng li xue bao : [Acta physiologica Sinica],
T Tanaka, and H Saito, and N Matsuki
June 2010, The Journal of biological chemistry,
T Tanaka, and H Saito, and N Matsuki
November 2008, Journal of neurochemistry,
T Tanaka, and H Saito, and N Matsuki
July 2020, The Journal of biological chemistry,
T Tanaka, and H Saito, and N Matsuki
November 2018, Journal of neurophysiology,
T Tanaka, and H Saito, and N Matsuki
October 1997, Sheng li xue bao : [Acta physiologica Sinica],
T Tanaka, and H Saito, and N Matsuki
January 2018, Bulletin of experimental biology and medicine,
T Tanaka, and H Saito, and N Matsuki
February 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!