Myelinated axons and the pyramidal cell modules in monkey primary visual cortex. 1996

A Peters, and C Sethares
Department and Anatomy and Neurobiology, Boston University School of Medicine, Massachusetts 02118, USA.

In addition to the horizontal bands of myelinated axons that produce the line of Gennari and the inner band of Baillarger, the macaque primary visual cortex contains prominent vertical bundles of myelinated axons. In tangential sections through layer IVC, these axon bundles are regularly arranged. They have a mean center-to-center spacing of about 23 microns, and each one contains an average of 34 (S.D. +/- 13) myelinated axons. These bundles seem to be largely composed of efferent fibers, because in material in which pyramidal cells have been labelled in layer II/III and in layers IVA and IVB the axons of these neurons descend towards the white matter in bundles. However, it is doubtful whether all of the descending myelinated axons from the superficial layers emerge from the cortex, since counts show that the bundles contain maximum numbers of myelinated axons at the level of layer IVC, and that in layers V and VI their number is reduced by about 30%. Perhaps some of the axons enter the line of Baillarger, in layer V. When the bundles of myelinated axons and the clusters of apical dendrites of the layer V pyramidal cells are visualized simultaneously within layer IVC in electron microscopic preparations, it is apparent that their center-to-center spacing is similar, namely, about 23 microns and that a bundle of axons has a cluster of apical dendrites lying adjacent to it. Because of this association, and because axons from layer III pyramidal cells have been shown to enter the bundles, it is suggested that the myelinated axon bundles contain the efferent axons from the projection neurons in the individual pyramidal cell modules. However, in addition to the myelinated axons, the bundles contain unmyelinated axons, so that they also probably serve as the conduits for axons forming connections between layers. It is proposed that the pyramidal cell modules are the basic, functional neuronal units of the visual cortex, and since the neurons within a particular module can be expected to have slightly different inputs and response properties from those in neighboring modules, the individual axon bundles that emerge from each module would be expected to carry a unique set of efferent information.

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D004396 Coloring Agents Chemicals and substances that impart color including soluble dyes and insoluble pigments. They are used in INKS; PAINTS; and as INDICATORS AND REAGENTS. Coloring Agent,Dye,Dyes,Organic Pigment,Stain,Stains,Tissue Stain,Tissue Stains,Organic Pigments,Pigments, Inorganic,Agent, Coloring,Inorganic Pigments,Pigment, Organic,Pigments, Organic,Stain, Tissue,Stains, Tissue
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D017966 Pyramidal Cells Projection neurons in the CEREBRAL CORTEX and the HIPPOCAMPUS. Pyramidal cells have a pyramid-shaped soma with the apex and an apical dendrite pointed toward the pial surface and other dendrites and an axon emerging from the base. The axons may have local collaterals but also project outside their cortical region. Pyramidal Neurons,Cell, Pyramidal,Cells, Pyramidal,Neuron, Pyramidal,Neurons, Pyramidal,Pyramidal Cell,Pyramidal Neuron

Related Publications

A Peters, and C Sethares
January 1993, Cerebral cortex (New York, N.Y. : 1991),
A Peters, and C Sethares
December 2005, Cerebral cortex (New York, N.Y. : 1991),
A Peters, and C Sethares
January 1980, Neuroscience,
A Peters, and C Sethares
April 2001, The Journal of comparative neurology,
A Peters, and C Sethares
June 2015, Cerebral cortex (New York, N.Y. : 1991),
Copied contents to your clipboard!