A novel BCR-ABL fusion gene (e6a2) in a patient with Philadelphia chromosome-negative chronic myelogenous leukemia. 1996

A Hochhaus, and A Reiter, and H Skladny, and J V Melo, and C Sick, and U Berger, and J Q Guo, and R B Arlinghaus, and R Hehlmann, and J M Goldman, and N C Cross
III. Medizinische Klinik, Klinikum Mannheim der Universität Heidelberg, Mannheim, Germany.

A novel variant of the chimeric BCR-ABL mRNA transcript was detected in a patient with Philadelphia chromosome-negative (Ph-) chronic myelogenous leukemia (CML) by multiplex reverse-transcription polymerase chain reaction (RT-PCR). Sequence analysis of the fusion region of the amplified cDNA fragment showed an in-frame joining of exon e6 of the BCR gene and exon a2 of the ABL gene, giving rise to an e6a2 BCR-ABL transcript. This finding was confirmed by Southern blot analysis using a specific probe corresponding to intron 6 of the BCR gene, whereas conventional Southern blot for rearrangement of the major breakpoint cluster region (M-bcr) was negative. Western blot studies detected a BCR-ABL protein slightly larger than p185 BCR-ABL. Metaphase fluorescence in situ hybridization showed an insertion of ABL material into the BCR region without reciprocal BCR translocation. The findings in this case show that atypical BCR-ABL transcripts are detectable even in Ph- CML patients without M-bcr-rearrangements. Multiplex PCR using primers that allow for amplification of all known BCR-ABL transcripts is an appropriate method to exclude these rare variants.

UI MeSH Term Description Entries
D008297 Male Males
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012334 RNA, Neoplasm RNA present in neoplastic tissue. Neoplasm RNA
D014178 Translocation, Genetic A type of chromosome aberration characterized by CHROMOSOME BREAKAGE and transfer of the broken-off portion to another location, often to a different chromosome. Chromosomal Translocation,Translocation, Chromosomal,Chromosomal Translocations,Genetic Translocation,Genetic Translocations,Translocations, Chromosomal,Translocations, Genetic
D015464 Leukemia, Myelogenous, Chronic, BCR-ABL Positive Clonal hematopoetic disorder caused by an acquired genetic defect in PLURIPOTENT STEM CELLS. It starts in MYELOID CELLS of the bone marrow, invades the blood and then other organs. The condition progresses from a stable, more indolent, chronic phase (LEUKEMIA, MYELOID, CHRONIC PHASE) lasting up to 7 years, to an advanced phase composed of an accelerated phase (LEUKEMIA, MYELOID, ACCELERATED PHASE) and BLAST CRISIS. Granulocytic Leukemia, Chronic,Leukemia, Granulocytic, Chronic,Leukemia, Myelocytic, Chronic,Leukemia, Myelogenous, Chronic,Leukemia, Myeloid, Chronic,Myelocytic Leukemia, Chronic,Myelogenous Leukemia, Chronic,Myeloid Leukemia, Chronic,Leukemia, Chronic Myelogenous,Leukemia, Chronic Myeloid,Leukemia, Myelogenous, Ph1 Positive,Leukemia, Myelogenous, Ph1-Positive,Leukemia, Myeloid, Ph1 Positive,Leukemia, Myeloid, Ph1-Positive,Leukemia, Myeloid, Philadelphia Positive,Leukemia, Myeloid, Philadelphia-Positive,Myelogenous Leukemia, Ph1-Positive,Myeloid Leukemia, Ph1-Positive,Myeloid Leukemia, Philadelphia-Positive,Chronic Granulocytic Leukemia,Chronic Granulocytic Leukemias,Chronic Myelocytic Leukemia,Chronic Myelocytic Leukemias,Chronic Myelogenous Leukemia,Chronic Myelogenous Leukemias,Chronic Myeloid Leukemia,Chronic Myeloid Leukemias,Granulocytic Leukemias, Chronic,Leukemia, Chronic Granulocytic,Leukemia, Chronic Myelocytic,Leukemia, Ph1-Positive Myelogenous,Leukemia, Ph1-Positive Myeloid,Leukemia, Philadelphia-Positive Myeloid,Leukemias, Chronic Granulocytic,Leukemias, Chronic Myelocytic,Leukemias, Chronic Myelogenous,Leukemias, Chronic Myeloid,Leukemias, Ph1-Positive Myelogenous,Leukemias, Ph1-Positive Myeloid,Leukemias, Philadelphia-Positive Myeloid,Myelocytic Leukemias, Chronic,Myelogenous Leukemia, Ph1 Positive,Myelogenous Leukemias, Chronic,Myelogenous Leukemias, Ph1-Positive,Myeloid Leukemia, Ph1 Positive,Myeloid Leukemia, Philadelphia Positive,Myeloid Leukemias, Chronic,Myeloid Leukemias, Ph1-Positive,Myeloid Leukemias, Philadelphia-Positive,Ph1-Positive Myelogenous Leukemia,Ph1-Positive Myelogenous Leukemias,Ph1-Positive Myeloid Leukemia,Ph1-Positive Myeloid Leukemias,Philadelphia-Positive Myeloid Leukemia,Philadelphia-Positive Myeloid Leukemias
D016044 Fusion Proteins, bcr-abl Translation products of a fusion gene derived from CHROMOSOMAL TRANSLOCATION of C-ABL GENES to the genetic locus of the breakpoint cluster region gene on chromosome 22. Several different variants of the bcr-abl fusion proteins occur depending upon the precise location of the chromosomal breakpoint. These variants can be associated with distinct subtypes of leukemias such as PRECURSOR CELL LYMPHOBLASTIC LEUKEMIA-LYMPHOMA; LEUKEMIA, MYELOGENOUS, CHRONIC, BCR-ABL POSITIVE; and NEUTROPHILIC LEUKEMIA, CHRONIC. Oncogene Protein p190(bcr-abl),Oncogene Protein p210(bcr-abl),bcr-abl Fusion Protein,bcr-abl Fusion Proteins,Bcr-Abl Tyrosine Kinase,Oncogene Protein p185(bcr-abl),Oncogene Protein p230(bcr-abl),p185(bcr-abl) Fusion Proteins,p190(bcr-abl) Fusion Proteins,p210(bcr-abl) Fusion Proteins,p230(bcr-abl) Fusion Proteins,Bcr Abl Tyrosine Kinase,Fusion Protein, bcr-abl,Fusion Proteins, bcr abl,Kinase, Bcr-Abl Tyrosine,Protein, bcr-abl Fusion,Tyrosine Kinase, Bcr-Abl,bcr abl Fusion Protein,bcr abl Fusion Proteins

Related Publications

A Hochhaus, and A Reiter, and H Skladny, and J V Melo, and C Sick, and U Berger, and J Q Guo, and R B Arlinghaus, and R Hehlmann, and J M Goldman, and N C Cross
August 2001, Journal of Nippon Medical School = Nippon Ika Daigaku zasshi,
A Hochhaus, and A Reiter, and H Skladny, and J V Melo, and C Sick, and U Berger, and J Q Guo, and R B Arlinghaus, and R Hehlmann, and J M Goldman, and N C Cross
November 1998, Cancer genetics and cytogenetics,
A Hochhaus, and A Reiter, and H Skladny, and J V Melo, and C Sick, and U Berger, and J Q Guo, and R B Arlinghaus, and R Hehlmann, and J M Goldman, and N C Cross
January 1990, Japanese journal of cancer research : Gann,
A Hochhaus, and A Reiter, and H Skladny, and J V Melo, and C Sick, and U Berger, and J Q Guo, and R B Arlinghaus, and R Hehlmann, and J M Goldman, and N C Cross
October 2002, Cancer,
A Hochhaus, and A Reiter, and H Skladny, and J V Melo, and C Sick, and U Berger, and J Q Guo, and R B Arlinghaus, and R Hehlmann, and J M Goldman, and N C Cross
November 1991, Blood,
A Hochhaus, and A Reiter, and H Skladny, and J V Melo, and C Sick, and U Berger, and J Q Guo, and R B Arlinghaus, and R Hehlmann, and J M Goldman, and N C Cross
August 2004, International journal of hematology,
A Hochhaus, and A Reiter, and H Skladny, and J V Melo, and C Sick, and U Berger, and J Q Guo, and R B Arlinghaus, and R Hehlmann, and J M Goldman, and N C Cross
July 2004, Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi,
A Hochhaus, and A Reiter, and H Skladny, and J V Melo, and C Sick, and U Berger, and J Q Guo, and R B Arlinghaus, and R Hehlmann, and J M Goldman, and N C Cross
November 2000, Leukemia,
A Hochhaus, and A Reiter, and H Skladny, and J V Melo, and C Sick, and U Berger, and J Q Guo, and R B Arlinghaus, and R Hehlmann, and J M Goldman, and N C Cross
March 1998, Cancer genetics and cytogenetics,
A Hochhaus, and A Reiter, and H Skladny, and J V Melo, and C Sick, and U Berger, and J Q Guo, and R B Arlinghaus, and R Hehlmann, and J M Goldman, and N C Cross
April 2022, Pharmacological research,
Copied contents to your clipboard!