Oxidation-specific epitopes in human coronary atherosclerosis are not limited to oxidized low-density lipoprotein. 1996

K D O'Brien, and C E Alpers, and J E Hokanson, and S Wang, and A Chait
Division of Cardiology, School of Medicine, University of Washington, Seattle 98195-6422, USA. cardiac@u.washington.edu

BACKGROUND Previous small studies have demonstrated positive immunohistochemical staining in rabbit and human atherosclerotic plaques by antibodies that recognize oxidized low-density lipoprotein (OxLDL), but none have examined a large number of human coronary arteries or evaluated whether epitopes recognized by these antibodies might be present on plaque proteins other than OxLDL. RESULTS Immunohistochemistry was performed on atherosclerotic (n = 87) and nonatherosclerotic (n = 51) coronary arterial segments from 20 patients by use of monoclonal antibodies that recognize epitopes on macrophages, smooth muscle cells, apolipoprotein (apo) B, and OxLDL. Staining with the OxLDL antibody (Ox5) was much more prevalent in atherosclerotic than in control segments. Extracellular Ox5 staining colocalized with apo B, but cell-associated Ox5 staining occurred in the absence of cell-associated apo B staining, which suggests that cell-associated epitopes for Ox5 were on proteins other than LDL. Epitopes for Ox5 formed in vitro on two readily available non-apo B proteins, human serum albumin and apo A-I, when these proteins were incubated under conditions of oxidant stress with polyunsaturated but not monounsaturated fatty acids; furthermore, an antioxidant inhibited Ox5 epitope formation. Thus, epitopes for Ox5 can form on proteins other than apo B. Also, phorbol ester-treated macrophages cultured in apo B-free medium developed epitopes for Ox5. CONCLUSIONS These findings are consistent with the hypothesis that atherosclerosis is associated with oxidative modification of proteins in addition to LDL, particularly cell-associated proteins, and that the antiatherosclerotic effects of antioxidants seen in some studies may not be solely due to prevention of LDL oxidation.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003324 Coronary Artery Disease Pathological processes of CORONARY ARTERIES that may derive from a congenital abnormality, atherosclerotic, or non-atherosclerotic cause. Arteriosclerosis, Coronary,Atherosclerosis, Coronary,Coronary Arteriosclerosis,Coronary Atherosclerosis,Left Main Coronary Artery Disease,Left Main Coronary Disease,Left Main Disease,Arterioscleroses, Coronary,Artery Disease, Coronary,Artery Diseases, Coronary,Atheroscleroses, Coronary,Coronary Arterioscleroses,Coronary Artery Diseases,Coronary Atheroscleroses,Left Main Diseases
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary
D004655 Emulsions Colloids formed by the combination of two immiscible liquids such as oil and water. Lipid-in-water emulsions are usually liquid, like milk or lotion. Water-in-lipid emulsions tend to be creams. The formation of emulsions may be aided by amphiphatic molecules that surround one component of the system to form MICELLES. Emulsion

Related Publications

K D O'Brien, and C E Alpers, and J E Hokanson, and S Wang, and A Chait
September 1992, Lancet (London, England),
K D O'Brien, and C E Alpers, and J E Hokanson, and S Wang, and A Chait
April 1996, American heart journal,
K D O'Brien, and C E Alpers, and J E Hokanson, and S Wang, and A Chait
December 2010, Arteriosclerosis, thrombosis, and vascular biology,
K D O'Brien, and C E Alpers, and J E Hokanson, and S Wang, and A Chait
January 1996, International journal of clinical & laboratory research,
K D O'Brien, and C E Alpers, and J E Hokanson, and S Wang, and A Chait
May 1992, Lancet (London, England),
K D O'Brien, and C E Alpers, and J E Hokanson, and S Wang, and A Chait
January 2006, Current atherosclerosis reports,
K D O'Brien, and C E Alpers, and J E Hokanson, and S Wang, and A Chait
July 2012, Lipids in health and disease,
K D O'Brien, and C E Alpers, and J E Hokanson, and S Wang, and A Chait
July 2023, International immunopharmacology,
K D O'Brien, and C E Alpers, and J E Hokanson, and S Wang, and A Chait
September 2000, Current opinion in cardiology,
Copied contents to your clipboard!