Spin-labeling analysis of structure and dynamics in octopus rhodopsin. 1996

H J Steinhoff, and J Schwemer
Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Germany.

The location of cysteines accessible in octopus rhodopsin were characterized by a spin-labeling technique. Two cysteines were found to bind a methanthiosulfonate spin label. One of the spin labels is attached to helix V with the side chain located within the membrane, most probably close to the polar head group region. The second spin label was found to be attached to cysteine 345 in the C terminus. Light-induced reversible electron paramagnetic resonance spectral changes were observed for the spin label attached at position 345. It is concluded that conformational changes occur during the rhodopsin to metarhodopsin transition in the vicinity of the C-terminus position 345.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008698 Mesylates Organic salts or esters of methanesulfonic acid. Mesilate,Methanesulfonates,Mesilates,Mesylate,Methylenesulfonates
D003497 Cyclic N-Oxides Heterocyclic compounds in which an oxygen is attached to a cyclic nitrogen. Heterocyclic N-Oxides,Cyclic N Oxides,Heterocyclic N Oxides,N Oxides, Cyclic,N-Oxides, Cyclic,N-Oxides, Heterocyclic,Oxides, Cyclic N
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012243 Rhodopsin A purplish-red, light-sensitive pigment found in RETINAL ROD CELLS of most vertebrates. It is a complex consisting of a molecule of ROD OPSIN and a molecule of 11-cis retinal (RETINALDEHYDE). Rhodopsin exhibits peak absorption wavelength at about 500 nm. Visual Purple
D013113 Spin Labels Molecules which contain an atom or a group of atoms exhibiting an unpaired electron spin that can be detected by electron spin resonance spectroscopy and can be bonded to another molecule. (McGraw-Hill Dictionary of Chemical and Technical Terms, 4th ed) Spin Label,Label, Spin,Labels, Spin
D049831 Octopodiformes A superorder in the class CEPHALOPODA, consisting of the orders Octopoda (octopus) with over 200 species and Vampyromorpha with a single species. The latter is a phylogenetic relic but holds the key to the origins of Octopoda. Octopoda,Octopus,Octopuses,Octopodas,Octopodiforme,Octopuse

Related Publications

H J Steinhoff, and J Schwemer
May 2007, Biophysical journal,
H J Steinhoff, and J Schwemer
January 1995, Biophysical chemistry,
H J Steinhoff, and J Schwemer
June 2003, Biochemistry,
H J Steinhoff, and J Schwemer
January 2008, Progress in nucleic acid research and molecular biology,
H J Steinhoff, and J Schwemer
January 1982, Methods in enzymology,
H J Steinhoff, and J Schwemer
May 1967, Nature,
H J Steinhoff, and J Schwemer
August 1980, Biochemical and biophysical research communications,
Copied contents to your clipboard!