Calcium stimulates intramitochondrial cholesterol transfer in bovine adrenal glomerulosa cells. 1996

N Cherradi, and M F Rossier, and M B Vallotton, and A M Capponi
Division of Endocrinology and Diabetology, Department of Medicine, Faculty of Medicine, CH-1211 Geneva, 14 Switzerland.

In adrenal glomerulosa cells, angiotensin II (Ang II) stimulates aldosterone synthesis through rises of cytosolic calcium ([Ca2+]c). The rate-limiting step in this process is the transfer of cholesterol to the inner mitochondrial membrane, where it is converted to pregnenolone by the P450 side chain cleavage enzyme. The aim of the present study was to examine the effect of changes in [Ca2+]c and of Ang II on intramitochondrial cholesterol distribution. Freshly prepared bovine zona glomerulosa cells were submitted to a cytosolic Ca2+ clamp (600 nM) or stimulated with Ang II (10 nM). Mitochondria were isolated and subfractionated into outer membranes (OM), inner membranes (IM), and contact sites (CS). Cholesterol content was determined by the cholesterol oxidase assay. Stimulation of intact cells with Ca2+ led to a marked decrease in cholesterol content of OM (to 54 +/- 24% of controls, n = 5) and to a concomitant increase of cholesterol in CS and IM (to 145 +/- 14%, n = 5). When glomerulosa cells were exposed to Ang II, a marked increase of cholesterol in CS occurred (to 172 +/- 16% of controls, n = 5). No significant changes were detected in OM cholesterol, suggesting a stimulation of cholesterol supply to the mitochondria in response to Ang II. Cycloheximide specifically and significantly reduced Ca2+-activated cholesterol transfer to CS and IM. In conclusion, our data indicate that one of the main functions of the Ca2+ messenger is to increase cholesterol supply to the P450 side chain cleavage enzyme by enhancing endogenous intermembrane cholesterol transfer to a mitochondrial site containing the enzymes responsible for the initial steps of the steroidogenic cascade.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013347 Subcellular Fractions Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163) Fraction, Subcellular,Fractions, Subcellular,Subcellular Fraction

Related Publications

N Cherradi, and M F Rossier, and M B Vallotton, and A M Capponi
January 1971, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
N Cherradi, and M F Rossier, and M B Vallotton, and A M Capponi
September 1991, Biochemical and biophysical research communications,
N Cherradi, and M F Rossier, and M B Vallotton, and A M Capponi
April 1998, Biochemical and biophysical research communications,
N Cherradi, and M F Rossier, and M B Vallotton, and A M Capponi
July 1992, Endocrinology,
N Cherradi, and M F Rossier, and M B Vallotton, and A M Capponi
November 1988, The Journal of biological chemistry,
N Cherradi, and M F Rossier, and M B Vallotton, and A M Capponi
June 2000, Biochimica et biophysica acta,
N Cherradi, and M F Rossier, and M B Vallotton, and A M Capponi
August 1983, Biochimica et biophysica acta,
N Cherradi, and M F Rossier, and M B Vallotton, and A M Capponi
December 1987, Biochemical and biophysical research communications,
N Cherradi, and M F Rossier, and M B Vallotton, and A M Capponi
March 1993, Endocrinology,
N Cherradi, and M F Rossier, and M B Vallotton, and A M Capponi
May 1981, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!