Increased feeding and neuropeptide Y (NPY) but not NPY mRNA levels in the hypothalamus of the rat following central administration of the serotonin synthesis inhibitor p-chlorophenylalanine. 1996

S Dryden, and H M Frankish, and Q Wang, and G Williams
Department of Medicine, University of Liverpool, UK.

Neurons containing serotonin (5-HT), a potent anorexic agent, come into contact with neuropeptide Y-ergic neurons, that project from the arcuate nucleus (ARC) to the paraventricular nucleus (PVN). NPY powerfully stimulates feeding and induces obesity when injected repeatedly into PVN. We hypothesize that 5-HT tonically inhibits the ARC-PVN neurons and that balance between the two systems determines feeding and energy homeostasis. This study aimed to determine whether central injection of the 5-HT synthesis inhibitor p-chlorophenylalanine (pCPA), which increases feeding, increased hypothalamic NPY and NPY mRNA levels. pCPA (10 mg/kg in 3 microliters) was administered into the third ventricle either as a single injection (n = 8) or daily for 7 days (n = 8). Control rats received a similar injection of saline. pCPA significantly increased food intake compared with controls after both single and repeated injections (P < 0.05). NPY levels were measured by radioimmunoassay in microdissected hypothalamic extracts. NPY levels in the acutely treated group were significantly increased in the paraventricular nucleus (PVN; by 41%, P = 0.01), anterior hypothalamic area (AHA; by 34%, P < 0.01) and lateral hypothalamic area (LHA; by 41%, P < 0.02). In the 7-day-treated group, NPY levels were also increased in the same areas, i.e. PVN (by 24%, P < 0.01), AHA (by 30%, P < 0.01) and LHA (by 38%, P = 0.01). There were no significant changes in the ARC or any other region or in hypothalamic NPY mRNA levels. pCPA administration increased NPY levels in several regions notably the PVN. This is a major site of NPY release, where NPY injection induces feeding. We suggest that the hyperphagia induced by pCPA is mediated by increased NPY levels and secretion in the PVN. This is further evidence for interactions between NPY and 5-HT in the control of energy homeostasis.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D010134 Fenclonine A selective and irreversible inhibitor of tryptophan hydroxylase, a rate-limiting enzyme in the biosynthesis of serotonin (5-HYDROXYTRYPTAMINE). Fenclonine acts pharmacologically to deplete endogenous levels of serotonin. p-Chlorophenylalanine,para-Chlorophenylalanine,CP-10,188,DL-3-(4-Chlorophenyl)alanine,Fenclonin,Fenclonine (L)-Isomer,Fenclonine Hydrobromide,Fenclonine Hydrochloride,Fenclonine, (D)-Isomer,Hydrobromide, Fenclonine,Hydrochloride, Fenclonine,para Chlorophenylalanine
D010286 Paraventricular Hypothalamic Nucleus Nucleus in the anterior part of the HYPOTHALAMUS. Hypothalamic Paraventricular Nucleus,Paraventricular Nucleus,Hypothalamic Nucleus, Paraventricular,Nucleus, Hypothalamic Paraventricular,Nucleus, Paraventricular,Nucleus, Paraventricular Hypothalamic,Paraventricular Nucleus, Hypothalamic
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body

Related Publications

S Dryden, and H M Frankish, and Q Wang, and G Williams
January 1991, Fundamental & clinical pharmacology,
S Dryden, and H M Frankish, and Q Wang, and G Williams
September 1998, Regulatory peptides,
S Dryden, and H M Frankish, and Q Wang, and G Williams
April 1991, Neuroscience letters,
S Dryden, and H M Frankish, and Q Wang, and G Williams
March 1995, Journal of neuroendocrinology,
S Dryden, and H M Frankish, and Q Wang, and G Williams
March 1994, Journal of medicinal chemistry,
S Dryden, and H M Frankish, and Q Wang, and G Williams
July 2006, Journal of psychopharmacology (Oxford, England),
S Dryden, and H M Frankish, and Q Wang, and G Williams
January 1984, Cell and tissue research,
S Dryden, and H M Frankish, and Q Wang, and G Williams
February 1992, The Journal of endocrinology,
Copied contents to your clipboard!