Nitric oxide suppresses increases in mesangial cell protein kinase C, transforming growth factor beta, and fibronectin synthesis induced by thromboxane. 1996

R K Studer, and F R DeRubertis, and P A Craven
Department of Medicine, VAMC, University Drive C, Pittsburgh, PA 15240, USA.

Thromboxane (TX) stimulation of fibronectin (FN) synthesis in mesangial cells (MC) is dependent on protein kinase C (PKC)-mediated increases in transforming growth factor beta (TGF beta), and is suppressed by increases in cellular cGMP. The current studies evaluate the role of cGMP-dependent and -independent actions of nitric oxide (NO) in modulating the responses of MC to the TX analogue U46619. TX-stimulated increases in PKC activity, TGF beta, and FN synthesis in MC were suppressed by either 8-Br-PET-cGMP or the NO donor S-nitroso-N-acetylpenicillamine (SNAP). By contrast, NO, but not cGMP, inhibited basal PKC activity, TGF beta bioactivity and FN synthesis. The cGMP-dependent protein kinase 1-alpha inhibitor 8-(4-chlorophenylthio)guanosine 3',5'-cyclic monophosphorothioate (Rp) restored the PKC, TGF beta, and the FN synthetic responses to TX when added to MC before exposure of the cells to either cGMP or SNAP. However, neither Rp nor the guanylate cyclase inhibitor Ly83583 significantly altered SNAP inhibition of basal PKC. In addition, Rp failed to alter the decreases in basal TGF beta bioactivity and FN synthesis seen in the presence of SNAP. In contrast to the FN response to U46619, cGMP and SNAP did not affect the stimulation of FN synthesis by exogenous TGF beta. The later findings are consistent with inhibitory actions of NO and cGMP at, or proximal to, U46619-induced increases in TGF beta in the suppression of TX-signaled increases in FN synthesis. Thus, NO depresses basal PKC and TGF beta bioactivity in MC by mechanisms that are largely independent of cGMP, whereas NO inhibition of these MC responses to TX is mediated primarily by increases in cGMP and activation of protein kinase 1-alpha.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010396 Penicillamine 3-Mercapto-D-valine. The most characteristic degradation product of the penicillin antibiotics. It is used as an antirheumatic and as a chelating agent in Wilson's disease. Dimethylcysteine,Mercaptovaline,beta,beta-Dimethylcysteine,Copper Penicillaminate,Cuprenil,Cuprimine,D-3-Mercaptovaline,D-Penicillamine,Metalcaptase,D 3 Mercaptovaline,D Penicillamine,Penicillaminate, Copper,beta,beta Dimethylcysteine
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011450 Prostaglandin Endoperoxides, Synthetic Synthetic compounds that are analogs of the naturally occurring prostaglandin endoperoxides and that mimic their pharmacologic and physiologic activities. They are usually more stable than the naturally occurring compounds. Prostaglandin Endoperoxide Analogs,Prostaglandin Endoperoxide Analogues,Synthetic Prostaglandin Endoperoxides,Analogues, Prostaglandin Endoperoxide,Endoperoxide Analogues, Prostaglandin,Endoperoxides, Synthetic Prostaglandin
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003864 Depression, Chemical The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Depression,Chemical Depressions,Depressions, Chemical
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

R K Studer, and F R DeRubertis, and P A Craven
August 2001, Kidney international,
R K Studer, and F R DeRubertis, and P A Craven
December 1998, Kidney international,
R K Studer, and F R DeRubertis, and P A Craven
July 2001, The Journal of laboratory and clinical medicine,
R K Studer, and F R DeRubertis, and P A Craven
December 1996, Inflammation,
R K Studer, and F R DeRubertis, and P A Craven
November 1994, The American journal of physiology,
R K Studer, and F R DeRubertis, and P A Craven
September 1997, Inflammation research : official journal of the European Histamine Research Society ... [et al.],
Copied contents to your clipboard!