Peripheral nerve regeneration. 1996

C Ide
Department of Anatomy and Neurobiology, Kyoto University, Faculty of Medicine, Japan.

Peripheral nerve regeneration comprises the formation of axonal sprouts, their outgrowth as regenerating axons and the reinnervation of original targets. This review focuses on the morphological features of axonal sprouts at the node of Ranvier and their subsequent outgrowth guided by Schwann cells or by Schwann cell basal laminae. Adhesion molecules such as N-CAM, L1 and N-cadherin are involved in the axon-to-axon and axon-to-Schwann cell attachment, and it is suggested that integrins such as alpha 1 beta 1 and alpha 6 beta 1 mediate the attachment between axons and Schwann cell basal laminae. The presence of synaptic vesicle-associated proteins such as synaptophysin, synaptotagmin and synapsin I in the growth cones of regenerating axons indicates the possibility that exocytotic fusion of vesicles with the surface axolemma supplies the membranous components for the extension of regenerating axons. Almost all the subtypes of protein kinase C have been localized in growth cones both in vivo and in vitro. Protein kinase C and GAP-43 are implicated to be involved in at least some part of the adhesion of growth cones to the substrate and their growth activity. The significance of tyrosine kinase in growth cones is emphasized. Tyrosine kinase plays an important role in intracellular signal transduction of the growth of regenerating axons mediated by both nerve trophic factors and adhesion molecules. Growth factors such as NGF, BDNF, CNTF and bFGF are also discussed mainly in terms of the influence of Schwann cells on regenerating axons.

UI MeSH Term Description Entries
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D011901 Ranvier's Nodes Regularly spaced gaps in the myelin sheaths of peripheral axons. Ranvier's nodes allow saltatory conduction, that is, jumping of impulses from node to node, which is faster and more energetically favorable than continuous conduction. Nodes of Ranvier,Nodes, Ranvier's,Ranvier Nodes,Ranviers Nodes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012583 Schwann Cells Neuroglial cells of the peripheral nervous system which form the insulating myelin sheaths of peripheral axons. Schwann Cell,Cell, Schwann,Cells, Schwann
D015820 Cadherins Calcium-dependent cell adhesion proteins. They are important in the formation of ADHERENS JUNCTIONS between cells. Cadherins are classified by their distinct immunological and tissue specificities, either by letters (E- for epithelial, N- for neural, and P- for placental cadherins) or by numbers (cadherin-12 or N-cadherin 2 for brain-cadherin). Cadherins promote cell adhesion via a homophilic mechanism as in the construction of tissues and of the whole animal body. Cadherin,E-Cadherins,Epithelial-Cadherin,Liver Cell Adhesion Molecules,N-Cadherins,Neural Cadherin,P-Cadherins,Uvomorulin,Cadherin-1,Cadherin-2,Cadherin-3,E-Cadherin,Epithelial-Cadherins,Liver Cell Adhesion Molecule,N-Cadherin,Neural Cadherins,P-Cadherin,Placental Cadherins,Cadherin 1,Cadherin 2,Cadherin 3,Cadherin, Neural,Cadherins, Neural,Cadherins, Placental,E Cadherin,E Cadherins,Epithelial Cadherin,Epithelial Cadherins,N Cadherin,N Cadherins,P Cadherin,P Cadherins
D016708 Synaptophysin A MARVEL domain-containing protein found in the presynaptic vesicles of NEURONS and NEUROENDOCRINE CELLS. It is commonly used as an immunocytochemical marker for neuroendocrine differentiation. p38 Membrane Protein, Synaptic Vesicle

Related Publications

C Ide
January 1990, Annual review of neuroscience,
C Ide
January 1953, Journal international de chirurgie,
C Ide
July 1972, JAMA,
C Ide
January 2005, Advances in biochemical engineering/biotechnology,
C Ide
January 1991, Neurosurgery clinics of North America,
C Ide
January 2019, Frontiers in cellular neuroscience,
C Ide
May 2014, Journal of tissue engineering and regenerative medicine,
C Ide
February 2004, Journal of biomedical materials research. Part A,
C Ide
January 2013, Rinsho shinkeigaku = Clinical neurology,
C Ide
January 1990, Neuroscience research. Supplement : the official journal of the Japan Neuroscience Society,
Copied contents to your clipboard!