Multicopy single-stranded DNA of Escherichia coli enhances mutation and recombination frequencies by titrating MutS protein. 1996

W K Maas, and C Wang, and T Lima, and A Hach, and D Lim
Department of Microbiology, New York University Medical Center, New York USA.

Multicopy single-stranded DNA (msDNA) molecules consist of single-stranded DNA covalently linked to RNA. In Escherichia coli, such molecules are encoded by genetic elements called retrons. The DNA moieties of msDNAs have characteristic stem-loop structures, and most of these structures contain mismatched base pairs. Previously, we showed that retrons encoding msDNAs with mismatched base pairs are mutagenic when present in multicopy plasmids. In this study we show that such msDNAs, in a similar manner to genetic defects in mismatch repair, increase the frequency of interspecies recombination in matings between Salmonella typhimurium and E. coli. To demonstrate interference with mismatch repair by msDNA, we show that the addition of a plasmid containing the gene for MutS protein suppresses the mutagenic and recombinogenic effects of msDNAs. We also show that in mutS mutants, msDNA does not increase the frequency of either mutations or interspecies recombination. We conclude from these findings that the mutagenic and recombinogenic effects of msDNAs are due to titrating out MutS protein.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D003227 Conjugation, Genetic A parasexual process in BACTERIA; ALGAE; FUNGI; and ciliate EUKARYOTA for achieving exchange of chromosome material during fusion of two cells. In bacteria, this is a uni-directional transfer of genetic material; in protozoa it is a bi-directional exchange. In algae and fungi, it is a form of sexual reproduction, with the union of male and female gametes. Bacterial Conjugation,Conjugation, Bacterial,Genetic Conjugation
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

W K Maas, and C Wang, and T Lima, and A Hach, and D Lim
December 1997, Journal of bacteriology,
W K Maas, and C Wang, and T Lima, and A Hach, and D Lim
April 1992, Journal of bacteriology,
W K Maas, and C Wang, and T Lima, and A Hach, and D Lim
December 1992, Molecular microbiology,
W K Maas, and C Wang, and T Lima, and A Hach, and D Lim
December 1990, Microbiological reviews,
W K Maas, and C Wang, and T Lima, and A Hach, and D Lim
November 1990, Journal of bacteriology,
W K Maas, and C Wang, and T Lima, and A Hach, and D Lim
August 1996, Journal of bacteriology,
W K Maas, and C Wang, and T Lima, and A Hach, and D Lim
June 1998, Journal of bacteriology,
W K Maas, and C Wang, and T Lima, and A Hach, and D Lim
May 2010, The Journal of biological chemistry,
W K Maas, and C Wang, and T Lima, and A Hach, and D Lim
January 1983, Cold Spring Harbor symposia on quantitative biology,
Copied contents to your clipboard!