Characterization of urinary metabolites from Sprague-Dawley rats and B6C3F1 mice exposed to [1,2,3,4-13C]butadiene. 1996

S K Nauhaus, and T R Fennell, and B Asgharian, and J A Bond, and S C Sumner
Chemical Industry Institute of Toxicology, Research Triangle Park, North Carolina 27709, USA.

1,3-Butadiene (BD) is used in the production of synthetic rubber and other resins. Carcinogenic effects have been observed in laboratory animals exposed to BD, with mice being more sensitive than rats. Metabolic oxidation of butadiene to epoxides is believed to be a crucial step in the initiation of tumors by BD. However, limited information is available that describes the in vivo metabolism of BD. Male Sprague-Dawley rats and B6C3F1 mice were exposed to 800 ppm [1,2 3,4-13C]butadiene for 5 h, and urine was collected during and for 20 h following exposure. Urinary metabolites were characterized using 1- and 2-dimensional methods of NMR spectroscopy. Three metabolites previously detected in vivo, N-acetyl-S-(2-hydroxy-3-butenyl)-L-cysteine, N-acetyl-S-(1-(hydroxymethyl)-2-propenyl)-L-cysteine, and N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine, were present in both rat and mouse urine, accounting for 87% and 73% of the total metabolites excreted, respectively. A fourth metabolite, previously detected in vitro, 3-butene-1,2-diol, was also present in both rat and mouse urine and comprised 5% and 3% of the total metabolites excreted, respectively. An additional metabolite detected only in mouse urine that is derived from glutathione conjugation with epoxybutene was identified as S-(1-(hydroxymethyl)-2-propenyl)-L-cysteine (4%). N-Acetyl-S-(1-hydroxy-3-butenyl)-L-cysteine (4%), detected in mouse urine, is a thiohemiacetal product of 3-butenal. Additionally, mice excreted N-acetyl-S-(3-hydroxypropyl)-L-cysteine (5%) and N-acetyl-S-(2-carboxyethyl)-L-cysteine (5%), which could be derived from further metabolism of N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine or from glutathione conjugation with acrolein. Mice excreted N-acetyl-S-(1-(hydroxymethyl)-3,4-dihydroxypropyl)-L-cysteine (5%), which could be derived from glutathione conjugation with diepoxybutane (BDE), while rats excreted 1,3-dihydroxypropanone (5%), which may be derived from hydrolysis of BDE. These studies indicate that reactive aldehydes are produced as metabolites of BD in vivo, in addition to the reactive monoepoxide and diepoxide of BD. The greater toxicity of BD in mice compared with rats may be attributed to the greater ability of rats to detoxify BDE via hydrolysis, and/or to the production of reactive aldehydes.

UI MeSH Term Description Entries
D008297 Male Males
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D002070 Butadienes Four carbon unsaturated hydrocarbons containing two double bonds. Butadiene Derivative,Butadiene Derivatives,Derivative, Butadiene,Derivatives, Butadiene
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D004781 Environmental Exposure The exposure to potentially harmful chemical, physical, or biological agents in the environment or to environmental factors that may include ionizing radiation, pathogenic organisms, or toxic chemicals. Exposure, Environmental,Environmental Exposures,Exposures, Environmental
D000280 Administration, Inhalation The administration of drugs by the respiratory route. It includes insufflation into the respiratory tract. Drug Administration, Inhalation,Drug Administration, Respiratory,Drug Aerosol Therapy,Inhalation Drug Administration,Inhalation of Drugs,Respiratory Drug Administration,Aerosol Drug Therapy,Aerosol Therapy, Drug,Drug Therapy, Aerosol,Inhalation Administration,Administration, Inhalation Drug,Administration, Respiratory Drug,Therapy, Aerosol Drug,Therapy, Drug Aerosol
D000447 Aldehydes Organic compounds containing a carbonyl group in the form -CHO. Aldehyde
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S K Nauhaus, and T R Fennell, and B Asgharian, and J A Bond, and S C Sumner
December 2011, Toxicology letters,
S K Nauhaus, and T R Fennell, and B Asgharian, and J A Bond, and S C Sumner
November 1999, Toxicological sciences : an official journal of the Society of Toxicology,
S K Nauhaus, and T R Fennell, and B Asgharian, and J A Bond, and S C Sumner
May 2003, Chemico-biological interactions,
S K Nauhaus, and T R Fennell, and B Asgharian, and J A Bond, and S C Sumner
October 1996, Toxicology,
S K Nauhaus, and T R Fennell, and B Asgharian, and J A Bond, and S C Sumner
November 1986, Mutagenesis,
S K Nauhaus, and T R Fennell, and B Asgharian, and J A Bond, and S C Sumner
May 1997, Chemico-biological interactions,
S K Nauhaus, and T R Fennell, and B Asgharian, and J A Bond, and S C Sumner
March 2009, Cancer research,
S K Nauhaus, and T R Fennell, and B Asgharian, and J A Bond, and S C Sumner
March 2021, Toxicity report series,
S K Nauhaus, and T R Fennell, and B Asgharian, and J A Bond, and S C Sumner
June 1990, Environmental health perspectives,
Copied contents to your clipboard!