Effects of antibiotics on epithelial ion transport in the rabbit distal colon in-vitro. 1996

J M Goldhill, and K Rose, and W H Percy
Department of Physiology & Pharmacology, School of Medicine, University of South Dakota, Vermillion 57069, USA.

One side-effect of the therapeutic use of antimicrobial agents is respiratory paralysis as a result of inhibition of skeletal neuromuscular transmission; cholinergic neuro-effector motor transmission in the gastrointestinal tract is inhibited by the same classes of antimicrobial agent. Study of the effects of several classes of antibiotic compound on intestinal motility has suggested that antibiotic-induced alterations of intestinal motility may be related to the onset of diarrhoea or the development of antibiotic-associated colitis. These compounds may, however, also initiate or exacerbate diarrhoea by altering control of epithelial function, a possibility that has not previously been rigorously investigated. This series of experiments investigated the effect of six antibiotics on rabbit distal colonic epithelial ion transport. Of all the antibiotics studied, only ampicillin was without effect. Clindamycin, erythromycin, gentamicin and lincomycin, each reduced the response of the epithelium to electrical field stimulation. In addition, the lincosamides clindamycin and lincomycin reduced basal short circuit current and the epithelial response to acetylcholine. Vancomycin had no effect on the response to electrical field stimulation or acetylcholine but enhanced the secretory action of prostaglandin E2. These data suggest that, in addition to their ability to alter intestinal motility, a number of potential antibiotic interactions with the epithelium and its innervation may contribute to the pathogenesis of antibiotic-associated diarrhoea and colitis.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003106 Colon The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON. Appendix Epiploica,Taenia Coli,Omental Appendices,Omental Appendix,Appendices, Omental,Appendix, Omental
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine

Related Publications

J M Goldhill, and K Rose, and W H Percy
May 1991, The Journal of pharmacology and experimental therapeutics,
J M Goldhill, and K Rose, and W H Percy
June 1986, The American journal of physiology,
J M Goldhill, and K Rose, and W H Percy
February 1978, The Journal of membrane biology,
J M Goldhill, and K Rose, and W H Percy
September 2004, Pflugers Archiv : European journal of physiology,
J M Goldhill, and K Rose, and W H Percy
February 2011, American journal of physiology. Gastrointestinal and liver physiology,
J M Goldhill, and K Rose, and W H Percy
November 2000, Japanese journal of pharmacology,
J M Goldhill, and K Rose, and W H Percy
February 1980, The American journal of physiology,
J M Goldhill, and K Rose, and W H Percy
February 1985, Pflugers Archiv : European journal of physiology,
J M Goldhill, and K Rose, and W H Percy
November 2005, The Journal of surgical research,
J M Goldhill, and K Rose, and W H Percy
September 2006, Biological & pharmaceutical bulletin,
Copied contents to your clipboard!