Responses of auditory nerve fibers of the unanesthetized decerebrate cat to click pairs as simulated echoes. 1996

K Parham, and H B Zhao, and D O Kim
Department of Surgery, University of Connecticut Health Center, Farmington 06030-1110, USA.

1. To elucidate the peripheral contribution to "echo" processing in the auditory system, we examined the characteristics of auditory nerve responses to click-pair stimuli in unanesthetized, decerebrate cats. We used equilevel click pairs at peak levels of 45, 65, and 85 dB SPL re 20 microPa. The interclick intervals ranged from 1 to 32 ms. This study reports results from 78 auditory nerve fibers in 7 cats. The fibers were divided into 2 groups: 33 low- and 45 high-spontaneous rate (SR), with SRs less than and > or = 20 spikes/s, respectively. A method was introduced to quantify the second-click response, and its recovery was examined as a function of the interclick interval. 2. In general, auditory nerve fibers showed a gradual recovery of the second-click response as interclick interval was increased. Noticeable differences in the second-click response recovery functions emerged among fiber populations that were related to the SR. Low-SR fibers showed little change in the recovery functions of the second-click response as the click level was increased from 45 to 85 dB SPL. In contrast, high-SR fibers showed slower recoveries with increasing click level from 45 to 85 dB SPL. At 45 and 65 dB SPL, the recovery functions of the two SR groups were similar. At 85 dB SPL, high-SR fibers exhibited slower recovery than low-SR fibers, regardless of fiber characteristic frequency. The interclick intervals at 50% second-click response ranged from 1 to 6 ms (mean, 1.4 ms) among low-SR fibers. The interclick intervals at 50% second-click response for high-SR fibers, whereas similar to those for the low-SR fibers at 45 and 65 dB SPL, ranged from 2 to 16 ms (mean, 3 ms) for high-SR fibers, at 85 dB SPL. 3. We also examined auditory nerve compound action potentials (CAPs) evoked by click-pair stimuli for various interclick intervals and click levels. With increasing interclick interval, the amplitude of the second-click CAP increased, and with increasing level, the second-click CAP showed slower recovery. At 45 dB SPL, the recovery functions of the second-click CAP were similar to those of the high- and low-SR fibers. At higher levels, the CAP exhibited lower second-click response values than both high- and low-SR fiber populations for interclick intervals < 4-8 ms. At 85 dB SPL, as interclick interval increased, between 8 and 16 ms, the CAP second-click response converged with that of the high-SR fibers, and by 32 ms, the second-click response values were similar for the CAP, high- and low-SR fibers. 4. The present results are consistent with those of forward masking studies at the level of the auditory nerve in that both demonstrate a short-term reduction of the neural responses. However, the two results differ in that we observed that high-SR fibers exhibited slower recovery than low-SR fibers in response to click-pair stimuli, opposite of the trend observed in the forward masking studies of responses to pure-tone bursts. 5. The present results on auditory nerve fiber responses to click-pair stimuli provide a reference for comparison with responses of central auditory neurons to similar stimuli. This information should serve to elucidate the peripheral contribution to the processing of echoes in the auditory system.

UI MeSH Term Description Entries
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D004455 Echolocation An auditory orientation mechanism involving the emission of high frequency sounds which are reflected back to the emitter (animal). Echolocations
D005069 Evaluation Studies as Topic Works about studies that determine the effectiveness or value of processes, personnel, and equipment, or the material on conducting such studies. Critique,Evaluation Indexes,Evaluation Methodology,Evaluation Report,Evaluation Research,Methodology, Evaluation,Pre-Post Tests,Qualitative Evaluation,Quantitative Evaluation,Theoretical Effectiveness,Use-Effectiveness,Critiques,Effectiveness, Theoretical,Evaluation Methodologies,Evaluation Reports,Evaluation, Qualitative,Evaluation, Quantitative,Evaluations, Qualitative,Evaluations, Quantitative,Indexes, Evaluation,Methodologies, Evaluation,Pre Post Tests,Pre-Post Test,Qualitative Evaluations,Quantitative Evaluations,Report, Evaluation,Reports, Evaluation,Research, Evaluation,Test, Pre-Post,Tests, Pre-Post,Use Effectiveness
D000159 Vestibulocochlear Nerve The 8th cranial nerve. The vestibulocochlear nerve has a cochlear part (COCHLEAR NERVE) which is concerned with hearing and a vestibular part (VESTIBULAR NERVE) which mediates the sense of balance and head position. The fibers of the cochlear nerve originate from neurons of the SPIRAL GANGLION and project to the cochlear nuclei (COCHLEAR NUCLEUS). The fibers of the vestibular nerve arise from neurons of Scarpa's ganglion and project to the VESTIBULAR NUCLEI. Cranial Nerve VIII,Eighth Cranial Nerve,Cochleovestibular Nerve,Statoacoustic Nerve,Cochleovestibular Nerves,Cranial Nerve VIIIs,Cranial Nerve, Eighth,Cranial Nerves, Eighth,Eighth Cranial Nerves,Nerve VIIIs, Cranial,Nerve, Cochleovestibular,Nerve, Eighth Cranial,Nerve, Statoacoustic,Nerve, Vestibulocochlear,Nerves, Cochleovestibular,Nerves, Eighth Cranial,Nerves, Statoacoustic,Nerves, Vestibulocochlear,Statoacoustic Nerves,VIIIs, Cranial Nerve,Vestibulocochlear Nerves
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Parham, and H B Zhao, and D O Kim
December 1999, The Journal of the Acoustical Society of America,
K Parham, and H B Zhao, and D O Kim
December 1995, Journal of neurophysiology,
K Parham, and H B Zhao, and D O Kim
April 1990, The Journal of the Acoustical Society of America,
K Parham, and H B Zhao, and D O Kim
April 1996, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
K Parham, and H B Zhao, and D O Kim
January 1993, The Journal of the Acoustical Society of America,
K Parham, and H B Zhao, and D O Kim
January 1995, The Journal of physiology,
K Parham, and H B Zhao, and D O Kim
April 1998, The Journal of the Acoustical Society of America,
K Parham, and H B Zhao, and D O Kim
December 1987, The Journal of the Acoustical Society of America,
Copied contents to your clipboard!