Development in vitro of mouse oocytes from primordial follicles. 1996

J J Eppig, and M J O'Brien
Jackson Laboratory, Bar Harbor, Maine 04609-1500, USA. jje@aretha.jax.org

The objective of these studies was to achieve complete oocyte development in vitro beginning with the oocytes in the primordial follicles of newborn mouse ovaries. A two-step strategy was developed: first the ovaries of newborn mice were grown in organ culture for 8 days, and then the developing oocyte-granulosa cell complexes were isolated from the organ-cultured ovaries and cultured for an additional 14 days. The oocytes of primordial follicles are approximately 4190 microns3 in volume (20 microns in diameter), and this volume increased by approximately 53,810 microns3 to a final size of 58,000 microns3--a 13.8-fold increase--during the 8 days of organ culture. In the first experiment the oocyte-granulosa cell complexes were grown in control medium or in medium supplemented with FSH (0.5 ng/ml), epidermal growth factor (EGF; 1.0 ng/ml), or EGF plus FSH. Only 50-60% of the complexes cultured in control medium or in medium supplemented with FSH were recovered at the end of the 14-day culture period. In contrast, more than 90% of the complexes cultured in medium supplemented with EGF were recovered. The median size of the oocytes grown in control medium was 176,800 microns3 (69-microns diameter), while the median size of those grown in medium supplemented with EGF was slightly smaller (136,400-microns3 volume; 63-microns diameter), due to the survival of more smaller-size oocytes in EGF-containing medium. Thirty percent of the oocytes recovered after development in FSH-containing medium were competent to undergo germinal vesicle breakdown (GVB). In the second set of experiments, oocyte-granulosa cell complexes isolated from organ-cultured ovaries were cultured in medium supplemented with either 0.5 or 5.0 ng/ml FSH or with these same concentrations of FSH plus 1.0 ng/ml EGF. Again, increased oocyte recovery was observed in the groups cultured with EGF. There was no difference among the groups in the percentage of the oocytes that acquired competence to undergo GVB (32%) or in the percentage of GVB oocytes that produced a polar body, thus indicating progression of meiosis to metaphase II (22%). When the mature oocytes were inseminated, 21% underwent fertilization and cleavage to the 2-cell stage in the groups without EGF during oocyte development, while 42% underwent fertilization and cleavage to the 2-cell stage in the groups cultured with EGF. Less than 2% of the 2-cell-stage embryos developed to the blastocyst stage in any of the groups. One hundred and ninety 2-cell-stage embryos were transferred to the oviducts of pseudopregnant females; two females produced one pup each; one was living and the other had apparently died recently. The results reported here clearly show that complete development of oocytes in vitro from the primordial follicle stage is possible and establish the framework for further studies using oocytes from laboratory animals as model systems for the development of oocytes from humans as well as from animals of agricultural and zoological importance.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D004624 Embryo Transfer The transfer of mammalian embryos from an in vivo or in vitro environment to a suitable host to improve pregnancy or gestational outcome in human or animal. In human fertility treatment programs, preimplantation embryos ranging from the 4-cell stage to the blastocyst stage are transferred to the uterine cavity between 3-5 days after FERTILIZATION IN VITRO. Blastocyst Transfer,Tubal Embryo Transfer,Tubal Embryo Stage Transfer,Embryo Transfers,Transfer, Embryo,Transfers, Embryo
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D005260 Female Females
D005307 Fertilization in Vitro An assisted reproductive technique that includes the direct handling and manipulation of oocytes and sperm to achieve fertilization in vitro. Test-Tube Fertilization,Fertilizations in Vitro,In Vitro Fertilization,Test-Tube Babies,Babies, Test-Tube,Baby, Test-Tube,Fertilization, Test-Tube,Fertilizations, Test-Tube,In Vitro Fertilizations,Test Tube Babies,Test Tube Fertilization,Test-Tube Baby,Test-Tube Fertilizations
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin

Related Publications

J J Eppig, and M J O'Brien
May 2021, Fertility and sterility,
J J Eppig, and M J O'Brien
August 2016, Proceedings of the National Academy of Sciences of the United States of America,
J J Eppig, and M J O'Brien
May 2000, Molecular and cellular endocrinology,
J J Eppig, and M J O'Brien
January 1999, Journal of reproduction and fertility. Supplement,
J J Eppig, and M J O'Brien
January 2007, Proceedings of the National Academy of Sciences of the United States of America,
J J Eppig, and M J O'Brien
March 1994, Human reproduction (Oxford, England),
Copied contents to your clipboard!