Distribution of alpha 2C-adrenergic receptor-like immunoreactivity in the rat central nervous system. 1996

D L Rosin, and E M Talley, and A Lee, and R L Stornetta, and B D Gaylinn, and P G Guyenet, and K R Lynch
Department of Pharmacology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA. dr5e@virginia.edu

The distribution of alpha 2C-adrenergic receptors (ARs) in rat brain and spinal cord was examined immunohistochemically by using an affinity purified polyclonal antibody. The antibody was directed against a recombinant fusion protein consisting of a 70-amino-acid polypeptide portion of the third intracellular loop of the alpha 2C-AR fused to glutathione-S-transferase. Selectivity and subtype specificity of the antibody were demonstrated by immunoprecipitation of [125I]-photoaffinity-labeled alpha 2-AR and by immunohistochemical labeling of COS cells expressing the individual rat alpha 2-AR subtypes. In both cases the antibody recognized only the alpha 2C-AR subtype, and immunoreactivity was eliminated by preadsorption of the antibody with excess antigen. In rat brain, alpha 2C-AR-like immunoreactivity (alpha 2C-AR-LI) was found primarily in neuronal perikarya, with some labeling of proximal dendrites; analysis by confocal microscopy revealed the intracellular localization of some of the immunoreactivity. Areas of dense immunoreactivity include anterior olfactory nucleus, piriform cortex, septum, diagonal band, pallidum, preoptic areas, supraoptic nucleus, suprachiasmatic nucleus, paraventricular nucleus, amygdala, hippocampus (CA1 and dentate gyrus), substantia nigra, ventral tegmental area, raphe (pontine and medullary), motor trigeminal nucleus, facial nucleus, vestibular nucleus, dorsal motor nucleus of the vagus, and hypoglossal nucleus. Labeling was found in specific laminae throughout the cortex, and a sparse distribution of very darkly labeled cells was observed in the striatum. At all levels of the spinal cord there were small numbers of large, darkly labeled cells in layer IX and much smaller cells in layer X. In general, the pattern of alpha 2C-LI throughout the neuraxis is consistent with previously published reports of the distribution of receptor mRNA detected by hybridization histochemistry.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D004027 Diencephalon The paired caudal parts of the PROSENCEPHALON from which the THALAMUS; HYPOTHALAMUS; EPITHALAMUS; and SUBTHALAMUS are derived. Interbrain,Interbrains
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000918 Antibody Specificity The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site. Antibody Specificities,Specificities, Antibody,Specificity, Antibody
D012249 Rhombencephalon The posterior of the three primitive cerebral vesicles of an embryonic brain. It consists of myelencephalon, metencephalon, and isthmus rhombencephali from which develop the major BRAIN STEM components, such as MEDULLA OBLONGATA from the myelencephalon, CEREBELLUM and PONS from the metencephalon, with the expanded cavity forming the FOURTH VENTRICLE. Hindbrain,Hind Brain,Brain, Hind,Brains, Hind,Hind Brains,Hindbrains,Rhombencephalons
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

D L Rosin, and E M Talley, and A Lee, and R L Stornetta, and B D Gaylinn, and P G Guyenet, and K R Lynch
January 2000, Methods in molecular biology (Clifton, N.J.),
D L Rosin, and E M Talley, and A Lee, and R L Stornetta, and B D Gaylinn, and P G Guyenet, and K R Lynch
January 1986, Peptides,
D L Rosin, and E M Talley, and A Lee, and R L Stornetta, and B D Gaylinn, and P G Guyenet, and K R Lynch
July 2001, The Journal of comparative neurology,
D L Rosin, and E M Talley, and A Lee, and R L Stornetta, and B D Gaylinn, and P G Guyenet, and K R Lynch
February 1998, The Journal of comparative neurology,
D L Rosin, and E M Talley, and A Lee, and R L Stornetta, and B D Gaylinn, and P G Guyenet, and K R Lynch
January 1987, Peptides,
D L Rosin, and E M Talley, and A Lee, and R L Stornetta, and B D Gaylinn, and P G Guyenet, and K R Lynch
February 1989, Journal of neurocytology,
D L Rosin, and E M Talley, and A Lee, and R L Stornetta, and B D Gaylinn, and P G Guyenet, and K R Lynch
July 1991, Neuroendocrinology,
D L Rosin, and E M Talley, and A Lee, and R L Stornetta, and B D Gaylinn, and P G Guyenet, and K R Lynch
June 1998, Neuroscience,
D L Rosin, and E M Talley, and A Lee, and R L Stornetta, and B D Gaylinn, and P G Guyenet, and K R Lynch
January 1990, Peptides,
D L Rosin, and E M Talley, and A Lee, and R L Stornetta, and B D Gaylinn, and P G Guyenet, and K R Lynch
June 1997, The Journal of comparative neurology,
Copied contents to your clipboard!