Downregulation of muscarinic M2 receptors linked to K+ current in cultured guinea-pig atrial myocytes. 1996

M Bünemann, and B Brandts, and L Pott
Institut für Physiologie, Ruhr Universität Bochum, Germany.

1. Desensitization of muscarinic K+ current (IK(ACh)) was studied in cultured atrial myocytes from guinea-pig hearts using whole-cell voltage clamp. 2. Three different types of desensitization could be identified. A fast component which upon rapid superfusion with ACh resulted in a partial relaxation of IK(ACh) within a few seconds to a plateau which was maintained in the presence of ACh. Recovery from this type of desensitization paralleled the decay of IK(ACh) after washout of the agonist. A second type of desensitization was observed within minutes. This was reversed around 10 min after washout of ACh. Both types were heterologous with regard to the A1 receptor and the novel phospholipid (Pl) receptor, both of which activate IK(ACh) via the same signalling pathway. 3. A third type of desensitization (downregulation) occurred upon exposure of the cultures for 24-48 h to the muscarinic agonist carbachol (CCh). The level of downregulation depended on the concentration of CCh (0.1 microM < or = [CCh] < or = 10 microM). No recovery was observed within 5 h after washout of CCh. Thereafter sensitivity to ACh slowly returned (half-time (t1/2), approximately 20 h). 4. Downregulation by CCh (0.1-5 microM) was characterized by an increase in EC50 for ACh with no reduction in maximum IK(ACh). With 5 microM CCh, EC50 was increased from 0.1 to 3.7 microM. At 10 microM CCh EC50 was increased to 15 microM and maximal current that could be evoked by ACh was reduced to 15%. 5. Downregulation by CCh was homologous with regard to A1 and Pl receptors. Maximum IK(ACh), assayed by a saturating concentration of Pl, was not reduced in downregulated cells, suggesting a mechanism localized at the M2 receptor. 6. The changes in the concentration-response curves can be accounted for by assuming an excess of M2 receptors relative to the subsequent component of the signalling pathway. 7. As the intact heart is under tonic vagal control, downregulation is likely to contribute to controlling the sensitivity of the heart to vagal activity in situ.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005260 Female Females
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea

Related Publications

M Bünemann, and B Brandts, and L Pott
January 1995, The Journal of physiology,
M Bünemann, and B Brandts, and L Pott
February 1993, The Journal of physiology,
M Bünemann, and B Brandts, and L Pott
December 2004, Sheng li xue bao : [Acta physiologica Sinica],
M Bünemann, and B Brandts, and L Pott
January 1989, Pflugers Archiv : European journal of physiology,
M Bünemann, and B Brandts, and L Pott
November 1993, Pflugers Archiv : European journal of physiology,
M Bünemann, and B Brandts, and L Pott
December 1996, The Journal of physiology,
M Bünemann, and B Brandts, and L Pott
November 1997, Annals of the New York Academy of Sciences,
M Bünemann, and B Brandts, and L Pott
December 2005, Journal of biomedical science,
M Bünemann, and B Brandts, and L Pott
July 1987, The American journal of physiology,
Copied contents to your clipboard!