Differential regulation of angiotensinogen transcripts after renin infusion. 1996

A Milsted, and M Nishimura, and K B Brosnihan, and C M Ferrario
Department of Brain and Vascular Research, Cleveland Clinic Foundation, Ohio, USA. amymilsted@uakron.edu

To investigate angiotensinogen regulation in high-renin hypertension, we infused porcine renin intravenously at either a low (4 mU/kg per hour, n = 6) or high (20 mU/kg per hour, n = 9) dose into male Sprague-Dawley rats (225 to 250 g) for 5 days using osmotic minipumps. Control rats received 0.9% NaCl. In renin-infused rats, mean arterial pressure and plasma renin activity were significantly elevated. Both low- and high-renin infusions lowered plasma angiotensinogen levels. Plasma angiotension II was elevated in rats given renin but reached statistical significance only at the higher dose. Angiotensinogen mRNA isolated from the liver, adrenal gland, kidney, and brain was measured by slot blot analysis. Both renin doses were associated with significant decreases in the levels of liver and hypothalamic angiotensinogen mRNA. In the medulla oblongata, angiotensinogen mRNA was reduced only by the higher renin dose. The lower dose increased angiotensinogen mRNA in the adrenal gland, and in kidney, angiotensinogen mRNA level was unchanged by renin infusion. Angiotensinogen mRNA visualized on Northern blots showed that the number of mRNA species in liver decreased from three in control rats to a single mRNA species after renin infusion. Tissue differences in the size of the major angiotensinogen mRNA species were also apparent. This, together with changes in the total hybridization signal of angiotensinogen mRNA in tissues, suggests that renin differentially affects the different angiotensinogen mRNA transcripts. Results of this study indicate that angiotensinogen gene expression is regulated not only by alterations in levels of circulating angiotensin II but also by other mechanisms, presently unidentified, that are activated by renin infusions.

UI MeSH Term Description Entries
D008297 Male Males
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D000808 Angiotensinogen An alpha-globulin of about 453 amino acids, depending on the species. It is produced by the liver in response to lowered blood pressure and secreted into blood circulation. Angiotensinogen is the inactive precursor of the ANGIOTENSINS produced in the body by successive enzyme cleavages. Cleavage of angiotensinogen by RENIN yields the decapeptide ANGIOTENSIN I. Further cleavage of angiotensin I (by ANGIOTENSIN CONVERTING ENZYME) yields the potent vasoconstrictor octapeptide ANGIOTENSIN II; and then, via other enzymes, other angiotensins also involved in the hemodynamic-regulating RENIN-ANGIOTENSIN SYSTEM. Hypertensinogen,Renin-Substrate,SERPINA8,Proangiotensin,Renin Substrate Tetradecapeptide,Serpin A8,Renin Substrate,Tetradecapeptide, Renin Substrate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

A Milsted, and M Nishimura, and K B Brosnihan, and C M Ferrario
January 1991, Biomedica biochimica acta,
A Milsted, and M Nishimura, and K B Brosnihan, and C M Ferrario
March 1995, Nihon rinsho. Japanese journal of clinical medicine,
A Milsted, and M Nishimura, and K B Brosnihan, and C M Ferrario
January 1988, Clinical and experimental hypertension. Part A, Theory and practice,
A Milsted, and M Nishimura, and K B Brosnihan, and C M Ferrario
June 1965, The American journal of physiology,
A Milsted, and M Nishimura, and K B Brosnihan, and C M Ferrario
March 2000, Hypertension (Dallas, Tex. : 1979),
A Milsted, and M Nishimura, and K B Brosnihan, and C M Ferrario
September 1971, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
A Milsted, and M Nishimura, and K B Brosnihan, and C M Ferrario
January 1999, Hypertension (Dallas, Tex. : 1979),
A Milsted, and M Nishimura, and K B Brosnihan, and C M Ferrario
January 1990, The American journal of physiology,
A Milsted, and M Nishimura, and K B Brosnihan, and C M Ferrario
March 2007, Hypertension (Dallas, Tex. : 1979),
A Milsted, and M Nishimura, and K B Brosnihan, and C M Ferrario
January 1972, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Copied contents to your clipboard!