Less-than-additive epistatic interactions of quantitative trait loci in tomato. 1996

Y Eshed, and D Zamir
Department of Field and Vegetable Crops, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot, Israel.

Epistasis plays a role in determining the phenotype yet quantitative trait loci (QTL) mapping has uncovered little evidence for it. To address this apparent contradiction, we analyzed interactions between individual Lycopersicon pennellii chromosome segments introgressed into an otherwise homogeneous genetic background of L. esculentum (cv. M82). Ten different homozygous introgression lines, each containing from 4 to 58 cM of introgressed DNA, were crossed in a half diallele scheme. The 45 derived double heterozygotes were evaluated in the field for four yield-associated traits, along with the 10 single heterozygotes and M82. Of 180 (45 x 4) tested interactions, 28% were epistatic (P < 0.05) on both linear and geometric scales. The detected epistasis was predominantly less-than-additive, i.e., the effect of the double heterozygotes was smaller than the sum of the effects of the corresponding single heterozygotes. Epistasis was also found for homozygous linked QTL affecting fruit mass and total soluble solids. Although the frequency of epistasis was high, additivity was the major component in the interaction of pairs of QTL. We propose that the diminishing additivity of QTL effects is amplified when more loci are involved; this mode of epistasis may be an important factor in phenotype canalization and in breeding.

UI MeSH Term Description Entries
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D004843 Epistasis, Genetic A form of gene interaction whereby the expression of one gene interferes with or masks the expression of a different gene or genes. Genes whose expression interferes with or masks the effects of other genes are said to be epistatic to the effected genes. Genes whose expression is affected (blocked or masked) are hypostatic to the interfering genes. Deviation, Epistatic,Epistatic Deviation,Genes, Epistatic,Genes, Hypostatic,Epistases, Genetic,Gene-Gene Interaction, Epistatic,Gene-Gene Interactions, Epistatic,Genetic Epistases,Genetic Epistasis,Interaction Deviation,Non-Allelic Gene Interactions,Epistatic Gene,Epistatic Gene-Gene Interaction,Epistatic Gene-Gene Interactions,Epistatic Genes,Gene Gene Interaction, Epistatic,Gene Gene Interactions, Epistatic,Gene Interaction, Non-Allelic,Gene Interactions, Non-Allelic,Gene, Epistatic,Gene, Hypostatic,Hypostatic Gene,Hypostatic Genes,Interaction, Epistatic Gene-Gene,Interaction, Non-Allelic Gene,Interactions, Epistatic Gene-Gene,Interactions, Non-Allelic Gene,Non Allelic Gene Interactions,Non-Allelic Gene Interaction
D006579 Heterozygote An individual having different alleles at one or more loci regarding a specific character. Carriers, Genetic,Genetic Carriers,Carrier, Genetic,Genetic Carrier,Heterozygotes
D006720 Homozygote An individual in which both alleles at a given locus are identical. Homozygotes
D018551 Solanum lycopersicum A plant species of the family SOLANACEAE, native of South America, widely cultivated for their edible, fleshy, usually red fruit. Lycopersicon esculentum,Tomatoes,Tomato

Related Publications

Y Eshed, and D Zamir
February 2002, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik,
Y Eshed, and D Zamir
November 2014, BMC genetics,
Y Eshed, and D Zamir
July 2023, Heredity,
Y Eshed, and D Zamir
April 2002, Genetical research,
Y Eshed, and D Zamir
January 2009, Mammalian genome : official journal of the International Mammalian Genome Society,
Y Eshed, and D Zamir
November 2000, Behavior genetics,
Y Eshed, and D Zamir
January 2011, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik,
Y Eshed, and D Zamir
March 2002, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik,
Copied contents to your clipboard!