Expression and activity of the retinoblastoma protein (pRB)-family proteins, p107 and p130, during L6 myoblast differentiation. 1995

M Kiess, and R M Gill, and P A Hamel
Department of Cellular and Molecular Pathology, University of Toronto, Ontario, Canada.

The activity of the E2 F-family of transcription factors is tightly linked to control of the cell cycle. p107 and p130, two closely related members of the retinoblastoma protein-family of negative cell cycle regulators, modulate the activity of the E2f-family proteins by direct interaction with these factors. To understand the role of p107 and p130 in progression through or exit from the cell cycle, we have characterized the expression, phosphorylation state, cyclin-binding, and E2f-binding activity of p107 and p130 during terminal differentiation of rat myoblast cells into immature skeletal muscle (myotubes). In exponentially growing L6 myoblasts, p107 is phosphorylated in a cell cycle-dependent manner, and E2f-site binding complexes containing p107 is phosphorylated in a cell cycle-dependent manner, and E2f-site binding complexes containing p107 can be observed throughout the cell cycle. During differentiation of L6 cells, p107 levels are reduced, while p130 protein levels are increased 8-fold. Despite both p107 and p130 becoming hypophosphorylated during myogenesis, the E2F-site DNA-binding complexes containing p107 observed in exponentially growing myoblasts are quantitatively replaced in myotubes with complexes containing only p130. In myotubes, p107 is not associated with E2f-family proteins that are capable of binding DNA. The failure to observe p107-containing complexes in myotubes appears to be due to the differentiation-specific induction of both p130 and cyclin D3, p107 is found in complexes with cyclin D3 in myotubes, and the addition of exogenous cyclin D3 or p130 to lysates from undifferentiated L6 cells was able to disrupt p107-containing E2F-site binding complexes. In myotubes, p130 also forms complexes with cyclin D3 as well as cyclin E, cdk2, and cdk4. We are able to copurify cyclin D3 with cyclin E from myotubes, indicating the presence of a macromolecular complex containing both cyclin E and cyclin D3 simultaneously bound to p130. Thus, in myoblasts, p107 is normally involved in regulation of E2f-family proteins during cell cycle progression, while p130 is a differentiation-specific regulator of E2f activity. Our results also provide evidence that the apparent positive regulator of cell cycle progression, cyclin D3, has a function in terminally differentiated muscle cells.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D010750 Phosphoproteins Phosphoprotein
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell

Related Publications

M Kiess, and R M Gill, and P A Hamel
April 1997, The Journal of biological chemistry,
M Kiess, and R M Gill, and P A Hamel
July 1996, Clinical cancer research : an official journal of the American Association for Cancer Research,
M Kiess, and R M Gill, and P A Hamel
July 2009, The Journal of biological chemistry,
M Kiess, and R M Gill, and P A Hamel
July 1996, Genes & development,
M Kiess, and R M Gill, and P A Hamel
May 2003, The Journal of biological chemistry,
M Kiess, and R M Gill, and P A Hamel
June 1998, Biochemical and biophysical research communications,
Copied contents to your clipboard!