Prominent expression of bFGF in dorsal root ganglia after axotomy. 1995

R R Ji, and Q Zhang, and X Zhang, and F Piehl, and T Reilly, and R F Pettersson, and T Hökfelt
Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.

Using quantitative in situ hybridization and immunohistochemistry the expression of acidic and basic fibroblast growth factors (aFGF, bFGF) in dorsal root ganglia (DRGs) was examined. Around 5% of the small neurons expressed bFGF mRNA in normal DRGs. Nerve injury induced a very dramatic and rapid up-regulation in bFGF mRNA levels, and around 80% of all DRG neurons expressed bFGF mRNA 3 days after axotomy. A distinct increase in bFGF-like immunoreactivity (LI) was also detected as early as 15 h after axotomy. The elevation of bFGF mRNA and protein levels declined after 1 week. bFGF mRNA was also up-regulated in non-neuronal cells following axotomy. Normally bFGF-LI was mainly localized in the nuclei of DRG neurons and in some non-neuronal cells. After nerve section, bFGF-LI was in addition found in the cytoplasm, and many more bFGF-positive non-neuronal cells were observed. By means of confocal microscopy analysis of axotomized DRGs, some bFGF-LI could be detected in vesicle-like structures in the cytoplasm as well as in the nucleoli, in addition to the nuclear location. Application of leukaemia inhibitory factor to the transected sciatic nerve significantly increased the number of bFGF-positive neurons, whereas the bFGF-LI in non-neuronal cells was strongly suppressed. About 70% of the normal DRG neurons expressed aFGF mRNA and aFGF-LI. Axotomy produced a moderate increase in aFGF mRNA levels, but no detectable effect on protein levels. Taken together, the results show that bFGF may be involved in the neuronal response to injury and suggest a role in neuronal survival and regeneration in axotomized DRG neurons.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D016222 Fibroblast Growth Factor 2 A single-chain polypeptide growth factor that plays a significant role in the process of WOUND HEALING and is a potent inducer of PHYSIOLOGIC ANGIOGENESIS. Several different forms of the human protein exist ranging from 18-24 kDa in size due to the use of alternative start sites within the fgf-2 gene. It has a 55 percent amino acid residue identity to FIBROBLAST GROWTH FACTOR 1 and has potent heparin-binding activity. The growth factor is an extremely potent inducer of DNA synthesis in a variety of cell types from mesoderm and neuroectoderm lineages. It was originally named basic fibroblast growth factor based upon its chemical properties and to distinguish it from acidic fibroblast growth factor (FIBROBLAST GROWTH FACTOR 1). Basic Fibroblast Growth Factor,Fibroblast Growth Factor, Basic,HBGF-2,Cartilage-Derived Growth Factor,Class II Heparin-Binding Growth Factor,FGF-2,FGF2,Fibroblast Growth Factor-2,Heparin-Binding Growth Factor Class II,Prostate Epithelial Cell Growth Factor,Prostatropin,Cartilage Derived Growth Factor,FGF 2
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

R R Ji, and Q Zhang, and X Zhang, and F Piehl, and T Reilly, and R F Pettersson, and T Hökfelt
May 1973, The Journal of physiology,
R R Ji, and Q Zhang, and X Zhang, and F Piehl, and T Reilly, and R F Pettersson, and T Hökfelt
December 1998, Annals of the New York Academy of Sciences,
R R Ji, and Q Zhang, and X Zhang, and F Piehl, and T Reilly, and R F Pettersson, and T Hökfelt
August 1996, Neuroscience research,
R R Ji, and Q Zhang, and X Zhang, and F Piehl, and T Reilly, and R F Pettersson, and T Hökfelt
January 2005, Journal of neuropathic pain & symptom palliation,
R R Ji, and Q Zhang, and X Zhang, and F Piehl, and T Reilly, and R F Pettersson, and T Hökfelt
January 2010, Molecular pain,
R R Ji, and Q Zhang, and X Zhang, and F Piehl, and T Reilly, and R F Pettersson, and T Hökfelt
January 1994, The European journal of neuroscience,
R R Ji, and Q Zhang, and X Zhang, and F Piehl, and T Reilly, and R F Pettersson, and T Hökfelt
April 1997, Brain research,
R R Ji, and Q Zhang, and X Zhang, and F Piehl, and T Reilly, and R F Pettersson, and T Hökfelt
November 2014, Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery,
R R Ji, and Q Zhang, and X Zhang, and F Piehl, and T Reilly, and R F Pettersson, and T Hökfelt
November 1993, Neuroscience,
R R Ji, and Q Zhang, and X Zhang, and F Piehl, and T Reilly, and R F Pettersson, and T Hökfelt
May 1997, Neuroscience letters,
Copied contents to your clipboard!