Regulation of calcium influx and catecholamine secretion in chromaffin cells by a cytochrome P450 metabolite of arachidonic acid. 1995

E Hildebrandt, and J P Albanesi, and J R Falck, and W B Campbell
Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75235, USA.

These studies were designed to determine the role of arachidonic acid metabolites in catecholamine secretion from adrenal chromaffin cells. Inhibitors of the cytochrome P450-dependent metabolism of arachidonic acid were shown to interfere with stimulus-secretion coupling in cultured chromaffin cells. Ketoconazole (10 microM), clotrimazole (20 microM), and piperonyl butoxide (50 microM) inhibited carbachol-dependent catecholamine secretion by 44%, 83%, and 100%, respectively; histamine-dependent secretion by 25%, 60%, and 81%, and secretion induced by 59 mM KCl depolarization by 25%, 55%, and 89%. Uptake of 45Ca2+ into the cells in response to carbachol was inhibited 63% by ketoconazole, 86% by clotrimazole, and 95% by piperonyl butoxide; KCl-dependent uptake was inhibited 7%, 56%, and 85%, respectively. However, cytochrome P450 inhibitors did not inhibit catecholamine secretion when cells were stimulated with the calcium ionophores ionomycin or lasalocid. These results indicated the involvement of a cytochrome P450 product in controlling Ca2+ influx in response to membrane depolarization. Cells prelabeled with [3H]arachidonic acid formed a 3H-labeled metabolite which comigrated with authentic 5,6-epoxyeicosatrienoic (5,6-EET) acid on reverse phase and normal phase HPLC. Pretreatment with clotrimazole inhibited the production of this 3H-labeled metabolite. Addition of synthetic 5,6-EET (1 nM) to cells pretreated with piperonyl butoxide resulted in catecholamine secretion. These data suggest a role for a cytochrome P450 metabolite of arachidonic acid in agonist-stimulated catecholamine secretion.

UI MeSH Term Description Entries
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002837 Chromaffin Granules Organelles in CHROMAFFIN CELLS located in the adrenal glands and various other organs. These granules are the site of the synthesis, storage, metabolism, and secretion of EPINEPHRINE and NOREPINEPHRINE. Chromaffin Granule,Granule, Chromaffin
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D006632 Histamine An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Ceplene,Histamine Dihydrochloride,Histamine Hydrochloride,Peremin
D000311 Adrenal Glands A pair of glands located at the cranial pole of each of the two KIDNEYS. Each adrenal gland is composed of two distinct endocrine tissues with separate embryonic origins, the ADRENAL CORTEX producing STEROIDS and the ADRENAL MEDULLA producing NEUROTRANSMITTERS. Adrenal Gland,Gland, Adrenal,Glands, Adrenal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015126 8,11,14-Eicosatrienoic Acid A 20-carbon-chain fatty acid, unsaturated at positions 8, 11, and 14. It differs from arachidonic acid, 5,8,11,14-eicosatetraenoic acid, only at position 5. Homo-gamma Linolenic Acid,8,11,14 Eicosatrienoic Acid,Dihomo-gamma-Linolenic Acid,Dihomogammalinolenic Acid,Ro 12-1989,Dihomo gamma Linolenic Acid,Homo gamma Linolenic Acid,Linolenic Acid, Homo-gamma,Ro 12 1989,Ro 121989

Related Publications

E Hildebrandt, and J P Albanesi, and J R Falck, and W B Campbell
May 1994, Toxicology,
E Hildebrandt, and J P Albanesi, and J R Falck, and W B Campbell
September 1995, Neuroscience,
E Hildebrandt, and J P Albanesi, and J R Falck, and W B Campbell
January 1999, Journal of vascular research,
E Hildebrandt, and J P Albanesi, and J R Falck, and W B Campbell
August 1994, Biochemical pharmacology,
E Hildebrandt, and J P Albanesi, and J R Falck, and W B Campbell
January 1986, Diabetes/metabolism reviews,
E Hildebrandt, and J P Albanesi, and J R Falck, and W B Campbell
May 2005, Brain research,
E Hildebrandt, and J P Albanesi, and J R Falck, and W B Campbell
July 1984, Journal of neurochemistry,
E Hildebrandt, and J P Albanesi, and J R Falck, and W B Campbell
December 1992, Biochemical pharmacology,
E Hildebrandt, and J P Albanesi, and J R Falck, and W B Campbell
February 2005, Journal of pharmacological sciences,
Copied contents to your clipboard!