Autoradiographic analysis of neuropeptide Y receptor binding sites in the rat hippocampus after kainic acid-induced limbic seizures. 1996

C Röder, and C Schwarzer, and A Vezzani, and M Gobbi, and T Mennini, and G Sperk
Department of Pharmacology, University Innsbruck, Austria.

Changes in peptide YY receptor binding were investigated at various intervals after limbic seizures induced in rats by an intraperitoneal injection of kainic acid (10-12 mg/kg). Six to 24 h after kainic acid, specific peptide YY binding, representing Y1 and Y2 neuropeptide Y receptor subtypes, was markedly enhanced in the strata radiatum and oriens CA3 (increase by up to 185% and 178% of control values, respectively). Seven and 30 days after kainic acid, a reduction by up to 63% was found. The basal and kainic acid-induced changes in peptide YY binding were mainly represented by Y2 receptor sites. In the hilus of the dentate gyrus, an increase of global peptide YY binding by up to 400% was observed after 24 h which became attenuated to 125% after 30 days. In the molecular layer of the dentate gyrus global peptide YY binding increased by up to 87% between six and 24 h after kainic acid injection and was reduced by 37% after 30 days. Similar changes were observed in the cerebral cortex. Whereas in the hilus of the dentate gyrus peptide YY binding consisted mainly of Y2 sites, it represented predominantly Y1 receptors in the molecular layer and the cortex. The decline in global and Y2 specific peptide YY binding observed at 30 days in the hippocampus proper was prevented in animals protected from seizure-induced brain damage by an anticonvulsant dose of phenobarbital 3 h after injection of kainic acid. In the stratum moleculare of the dentate gyrus, Y2 specific binding was significantly enhanced while global peptide YY binding was slightly decreased compared to controls. These results show lasting changes in neuropeptide Y receptor binding sites after the acute seizures induced by kainic acid. Since neuropeptide Y modulates glutamatergic neurotransmission, these modifications may play an important role in the hippocampal excitability of chronically epileptic rats.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012640 Seizures Clinical or subclinical disturbances of cortical function due to a sudden, abnormal, excessive, and disorganized discharge of brain cells. Clinical manifestations include abnormal motor, sensory and psychic phenomena. Recurrent seizures are usually referred to as EPILEPSY or "seizure disorder." Absence Seizure,Absence Seizures,Atonic Absence Seizure,Atonic Seizure,Clonic Seizure,Complex Partial Seizure,Convulsion,Convulsions,Convulsive Seizure,Convulsive Seizures,Epileptic Seizure,Epileptic Seizures,Generalized Absence Seizure,Generalized Tonic-Clonic Seizures,Jacksonian Seizure,Myoclonic Seizure,Non-Epileptic Seizure,Nonepileptic Seizure,Partial Seizure,Seizure,Seizures, Convulsive,Seizures, Focal,Seizures, Generalized,Seizures, Motor,Seizures, Sensory,Tonic Clonic Seizure,Tonic Seizure,Tonic-Clonic Seizure,Atonic Absence Seizures,Atonic Seizures,Clonic Seizures,Complex Partial Seizures,Convulsion, Non-Epileptic,Generalized Absence Seizures,Myoclonic Seizures,Non-Epileptic Seizures,Nonepileptic Seizures,Partial Seizures,Petit Mal Convulsion,Seizures, Auditory,Seizures, Clonic,Seizures, Epileptic,Seizures, Gustatory,Seizures, Olfactory,Seizures, Somatosensory,Seizures, Tonic,Seizures, Tonic-Clonic,Seizures, Vertiginous,Seizures, Vestibular,Seizures, Visual,Single Seizure,Tonic Seizures,Tonic-Clonic Seizures,Absence Seizure, Atonic,Absence Seizure, Generalized,Absence Seizures, Atonic,Absence Seizures, Generalized,Auditory Seizure,Auditory Seizures,Clonic Seizure, Tonic,Clonic Seizures, Tonic,Convulsion, Non Epileptic,Convulsion, Petit Mal,Convulsions, Non-Epileptic,Focal Seizure,Focal Seizures,Generalized Seizure,Generalized Seizures,Generalized Tonic Clonic Seizures,Generalized Tonic-Clonic Seizure,Gustatory Seizure,Gustatory Seizures,Motor Seizure,Motor Seizures,Non Epileptic Seizure,Non Epileptic Seizures,Non-Epileptic Convulsion,Non-Epileptic Convulsions,Olfactory Seizure,Olfactory Seizures,Partial Seizure, Complex,Partial Seizures, Complex,Seizure, Absence,Seizure, Atonic,Seizure, Atonic Absence,Seizure, Auditory,Seizure, Clonic,Seizure, Complex Partial,Seizure, Convulsive,Seizure, Epileptic,Seizure, Focal,Seizure, Generalized,Seizure, Generalized Absence,Seizure, Generalized Tonic-Clonic,Seizure, Gustatory,Seizure, Jacksonian,Seizure, Motor,Seizure, Myoclonic,Seizure, Non-Epileptic,Seizure, Nonepileptic,Seizure, Olfactory,Seizure, Partial,Seizure, Sensory,Seizure, Single,Seizure, Somatosensory,Seizure, Tonic,Seizure, Tonic Clonic,Seizure, Tonic-Clonic,Seizure, Vertiginous,Seizure, Vestibular,Seizure, Visual,Seizures, Generalized Tonic-Clonic,Seizures, Nonepileptic,Sensory Seizure,Sensory Seizures,Single Seizures,Somatosensory Seizure,Somatosensory Seizures,Tonic Clonic Seizures,Tonic-Clonic Seizure, Generalized,Tonic-Clonic Seizures, Generalized,Vertiginous Seizure,Vertiginous Seizures,Vestibular Seizure,Vestibular Seizures,Visual Seizure,Visual Seizures
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017476 Receptors, Neuropeptide Y Cell surface proteins that bind neuropeptide Y with high affinity and trigger intracellular changes which influence the behavior of cells. Neuropeptide Y Receptors,Neuropeptide Y Receptor,Receptor, Neuropeptide Y

Related Publications

C Röder, and C Schwarzer, and A Vezzani, and M Gobbi, and T Mennini, and G Sperk
April 2000, Neuroscience letters,
C Röder, and C Schwarzer, and A Vezzani, and M Gobbi, and T Mennini, and G Sperk
September 1986, Journal of neurochemistry,
C Röder, and C Schwarzer, and A Vezzani, and M Gobbi, and T Mennini, and G Sperk
September 1985, Brain research,
C Röder, and C Schwarzer, and A Vezzani, and M Gobbi, and T Mennini, and G Sperk
November 1997, Brain research,
C Röder, and C Schwarzer, and A Vezzani, and M Gobbi, and T Mennini, and G Sperk
February 1991, Journal of neurochemistry,
C Röder, and C Schwarzer, and A Vezzani, and M Gobbi, and T Mennini, and G Sperk
September 1998, Epilepsy research,
C Röder, and C Schwarzer, and A Vezzani, and M Gobbi, and T Mennini, and G Sperk
September 1983, Neuroscience letters,
C Röder, and C Schwarzer, and A Vezzani, and M Gobbi, and T Mennini, and G Sperk
November 1999, Proceedings of the National Academy of Sciences of the United States of America,
C Röder, and C Schwarzer, and A Vezzani, and M Gobbi, and T Mennini, and G Sperk
August 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C Röder, and C Schwarzer, and A Vezzani, and M Gobbi, and T Mennini, and G Sperk
July 1981, Neurology,
Copied contents to your clipboard!