Loss of chromosome arm 9p DNA and analysis of the p16 and p15 cyclin-dependent kinase inhibitor genes in human parathyroid adenomas. 1996

H Tahara, and A P Smith, and R D Gaz, and A Arnold
Laboratory of Endocrine Oncology, Massachusetts General Hospital, Boston 02114, USA.

Rearrangement and overexpression of the PRAD1/cyclin D1 oncogene, a cell cycle regulator, have been implicated in the pathogenesis of a subset of parathyroid adenomas. Recently, two cell cycle regulators that inhibit the cyclin D1-associated kinases cdk4 and cdk6 have been identified: p16 and p15, the products of the INK4A (also known as CDKN2, MTS1) and INK4B (also known as MTS2) putative tumor suppressor genes located on 9p21. Because inactivation of the p16 or p15 genes might be expected to result in oncogenic consequences similar to those from cyclin D1 overexpression, we examined 25 parathyroid adenomas for 1) allelic loss of polymorphic DNA loci on chromosome arm 9p, 2) homozygous deletions of the p16 and p15 genes by Southern blot analysis, and 3) mutations of the p16 and p15 genes by single strand conformational polymorphism analysis. Heterozygous allelic loss at 9p was observed in 4 of 25 adenomas (16%); their smallest shared region of deletion was 9p21-pter, which includes both the p16 and p15 genes. However, single strand conformational polymorphism analysis of all 3 exons of the p16 gene and both exons of the p15 gene failed to demonstrate mutation in any of the 25 cases, and homozygous deletions of the p16 and p15 genes, which are present in some human cancers, were not found in any parathyroid tumors. These observations indicate that inactivating mutations or homozygous deletions of the p16 and p15 genes occur uncommonly, if ever, in parathyroid adenomas; however, loss of a different tumor suppressor gene (or genes) on 9p appears to contribute to the pathogenesis of a significant percentage of these tumors.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010282 Parathyroid Neoplasms Tumors or cancer of the PARATHYROID GLANDS. Cancer of Parathyroid,Parathyroid Cancer,Cancer of the Parathyroid,Neoplasms, Parathyroid,Parathyroid Adenoma,Parathyroid Carcinoma,Adenoma, Parathyroid,Adenomas, Parathyroid,Cancer, Parathyroid,Cancers, Parathyroid,Carcinoma, Parathyroid,Carcinomas, Parathyroid,Neoplasm, Parathyroid,Parathyroid Adenomas,Parathyroid Cancers,Parathyroid Carcinomas,Parathyroid Neoplasm
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002899 Chromosomes, Human, Pair 9 A specific pair of GROUP C CHROMSOMES of the human chromosome classification. Chromosome 9
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015139 Blotting, Southern A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Southern Blotting,Blot, Southern,Southern Blot

Related Publications

H Tahara, and A P Smith, and R D Gaz, and A Arnold
October 1995, Blood,
H Tahara, and A P Smith, and R D Gaz, and A Arnold
September 1995, British journal of haematology,
H Tahara, and A P Smith, and R D Gaz, and A Arnold
December 1995, Journal of molecular evolution,
H Tahara, and A P Smith, and R D Gaz, and A Arnold
May 1995, Genes, chromosomes & cancer,
H Tahara, and A P Smith, and R D Gaz, and A Arnold
July 1998, Genes, chromosomes & cancer,
H Tahara, and A P Smith, and R D Gaz, and A Arnold
October 1994, Blood,
Copied contents to your clipboard!