Phenylalanyl-tRNA synthetase from yeast and its discrimination of 19 amino acids in aminoacylation of tRNA(Phe)-C-C-A and tRNA(Phe)-C-C-A(3'NH2). 1996

W Freist, and H Sternbach, and F Cramer
Max-Planck-Institut für experimentelle Medizin, Göttingen, Germany.

For discrimination between phenylalanine and 18 other naturally occurring non-cognate amino acids by the class II aminoacyl-tRNA synthetase specific for phenylalanine, discrimination factors, D, of 190-6300 have been determined from kcal and K(m) values. Generally, phenylalanyl-tRNA synthetase is more specific than the class II enzymes specific for Lys and Thr, but works with lower accuracy than the class I enzymes specific for IIe, Tyr, and Arg. In aminoacylation of tRNA(Phe)-C-C-A(3'NH2) discrimination factors D1 vary between 80-1610. Pre-transfer proof-reading factors II1 are in the range 2.3-74, post-transfer proof-reading factors II2 in the range 1.0-4.6, showing that pre-transfer proof-reading is the main correction step, post-transfer proofreading is less effective or negligible. Initial discrimination factors (I1 and I2) caused by differences in Gibbs free energies of binding between phenylalanine and non-cognate amino acids have been calculated assuming a two-step binding process. Factors I1 can be related to hydrophobic-interaction forces depending on accessible surface areas of the amino acids, factors I2 scatter about a low mean value and do not show any relation to amino acid structures or surfaces, indicating less checking of amino acid side chains in the putative second binding step.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010652 Phenylalanine-tRNA Ligase An enzyme that activates phenylalanine with its specific transfer RNA. EC 6.1.1.20. Phenylalanyl T RNA Synthetase,Phe-tRNA Ligase,Phenylalanyl-tRNA Synthetase,Ligase, Phe-tRNA,Ligase, Phenylalanine-tRNA,Phe tRNA Ligase,Phenylalanine tRNA Ligase,Phenylalanyl tRNA Synthetase,Synthetase, Phenylalanyl-tRNA
D000215 Acylation The addition of an organic acid radical into a molecule.
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

W Freist, and H Sternbach, and F Cramer
April 1975, Proceedings of the National Academy of Sciences of the United States of America,
W Freist, and H Sternbach, and F Cramer
December 1974, European journal of biochemistry,
W Freist, and H Sternbach, and F Cramer
April 1978, European journal of biochemistry,
W Freist, and H Sternbach, and F Cramer
March 1972, European journal of biochemistry,
Copied contents to your clipboard!