Regulation of programmed cell death by interleukin-1 beta-converting enzyme family of proteases. 1996

M Miura, and J Yuan
Cardiovascular Research Center, Massachusetts General Hospital-East, Charlestown 02129, USA.

UI MeSH Term Description Entries
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017173 Caenorhabditis elegans A species of nematode that is widely used in biological, biochemical, and genetic studies. Caenorhabditis elegan,elegan, Caenorhabditis
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D017238 Genes, Helminth The functional hereditary units of HELMINTHS. Helminth Genes,Gene, Helminth,Helminth Gene
D020170 Caspase 1 A long pro-domain caspase that has specificity for the precursor form of INTERLEUKIN-1BETA. It plays a role in INFLAMMATION by catalytically converting the inactive forms of CYTOKINES such as interleukin-1beta to their active, secreted form. Caspase 1 is referred as interleukin-1beta converting enzyme and is frequently abbreviated ICE. ICE Protease,IL-1 beta-Converting Enzyme,Interleukin-1beta Converting Enzyme,CASP1 Caspase,IL-1 beta Convertase,IL1BC Enzyme,Interleukin-1 Converting Enzyme,Pro-Caspase-1,Procaspase-1,Caspase, CASP1,Convertase, IL-1 beta,Converting Enzyme, Interleukin-1,Converting Enzyme, Interleukin-1beta,IL 1 beta Convertase,IL 1 beta Converting Enzyme,Interleukin 1 Converting Enzyme,Interleukin 1beta Converting Enzyme,Pro Caspase 1,Procaspase 1,beta Convertase, IL-1,beta-Converting Enzyme, IL-1

Related Publications

M Miura, and J Yuan
January 1997, Journal of cellular biochemistry,
M Miura, and J Yuan
December 1996, Proceedings of the National Academy of Sciences of the United States of America,
M Miura, and J Yuan
January 1994, Methods in enzymology,
M Miura, and J Yuan
September 1998, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!