Molecular biology of iron acquisition in Saccharomyces cerevisiae. 1996

C C Askwith, and D de Silva, and J Kaplan
Division of Immunology and Cell Biology, Department of Pathology, University of Utah School of Medicine, Salt Lake City 84132, USA.

In recent years, significant advances have been made in our understanding of the mechanism and regulation of elemental iron transport in the eukaryote Saccharomyces cerevisiae. This organism employs two distinct iron-transport systems, depending on the bioavailability of the metal. In iron-replete environments, a low-affinity transport system (K(m) = 30 microM) is used to acquire iron. This system may also be used to acquire other metals including cobalt and cadmium. When environmental iron is limiting, a high-affinity (K(m) = 0.15 microM) iron-transport system is induced. Genetic studies in S. cerevisiae have identified multiple genes involved in both iron-transport systems. Cell-surface reductases, FRE1 and FRE2, provide ferrous iron for both systems. A non-ATP-dependent transmembrane transporter (FET4) has been identified as the main component of low-affinity transport. One gene identified to date as part of the high-affinity transport system is FET3, which shows high sequence and functional homology to multicopper oxidases. Accessory genes required for the functioning of this transport system include a plasma-membrane copper transporter (CTR1), an intracellular copper transporter (CCC2), and a putative transcription factor (AFT1). The mechanism by which these genes act in concert to ensure iron accumulation in S. cerevisiae presents an intriguing picture, drawing parallels with observations made in the human system almost 40 years ago.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D002570 Ceruloplasmin A multi-copper blood FERROXIDASE involved in iron and copper homeostasis and inflammation. Caeruloplasmin,Ferroxidase,Ceruloplasmin Ferroxidase,Ceruloplasmin Oxidase,Ferroxidase I,alpha(2)-Ceruloplasmin,Ferroxidase, Ceruloplasmin,Oxidase, Ceruloplasmin
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D015966 Gene Expression Regulation, Fungal Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi. Fungal Gene Expression Regulation,Regulation of Gene Expression, Fungal,Regulation, Gene Expression, Fungal
D029701 Saccharomyces cerevisiae Proteins Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes. Baker's Yeast Proteins,S cerevisiae Proteins

Related Publications

C C Askwith, and D de Silva, and J Kaplan
December 2021, Biological trace element research,
C C Askwith, and D de Silva, and J Kaplan
March 2002, Antimicrobial agents and chemotherapy,
C C Askwith, and D de Silva, and J Kaplan
December 1998, Yeast (Chichester, England),
C C Askwith, and D de Silva, and J Kaplan
January 1999, Critical reviews in biochemistry and molecular biology,
C C Askwith, and D de Silva, and J Kaplan
January 1998, Annual review of nutrition,
C C Askwith, and D de Silva, and J Kaplan
July 2003, Current genetics,
C C Askwith, and D de Silva, and J Kaplan
April 1988, FEBS letters,
C C Askwith, and D de Silva, and J Kaplan
January 1998, Progress in nucleic acid research and molecular biology,
C C Askwith, and D de Silva, and J Kaplan
March 2014, Proceedings of the National Academy of Sciences of the United States of America,
C C Askwith, and D de Silva, and J Kaplan
January 2020, Frontiers in microbiology,
Copied contents to your clipboard!