Voltage- and frequency-dependent modulation of L-type Ca2+ channel by MPC-1304, a novel calcium antagonist in guinea-pig hearts. 1995

A Sunami, and T Kanno, and A Kanda
Pharmacology Research Laboratory, Taiho Pharmaceutical Co., Ltd., Kawauchi-cho, Tokushima, Japan.

The electrophysiological effects of MPC-1304, a novel calcium antagonist, were examined using the conventional microelectrode and whole-cell patch-clamp techniques in guinea-pig hearts. MPC-1304, at 100 nM or higher concentrations, produced a dose-dependent reduction in the action potential duration of guinea-pig papillary muscles, without changes in resting membrane potentials and maximum rate of rise of action potentials. In guinea-pig ventricular myocytes, MPC-1304 (1-100 nM) dose-dependently depressed the initial inward currents induced by depolarizing pulses from a holding potential of -30 mV in the external Tyrode solution, as did nifedipine, whereas the late outward current was not changed by MPC-1304. In the presence of 100 nM of MPC-1304 or 100 nM of nifedipine, the first depolarizing pulse from a holding potential of -80 mV caused a depression of the isolated L-type Ca2+ current (I(Ca)) by 29.5 % and 29.4 % of the control, respectively (tonic block), and successive pulses further suppressed I(Ca) in a use-dependent manner (use-dependent block). The degree of steady state use-dependent block of I(Ca) by 100 nM of MPC-1304 was 25.5 % at the stimulus frequency of 1 Hz and further increased to 34.0 % at 2 Hz (frequency-dependent block), which were significantly larger than those by 100 nM of nifedipine at both frequencies. The onset rate of use-dependent block by 100 nM MPC-1304 was significantly smaller than that by 100 nM nifedipine. MPC-1304 (100 nM) and nifedipine (100 nM) shifted the steady state inactivation curve of I(Ca) toward the negative potential by 3.3 mV and 9.1 mV in the mid-potential of the curve, respectively. The estimated dissociation constants of MPC-1304 were 137.7 and 49.9 nM for the resting and inactivated states of the L-type Ca2+ channel, respectively, and those of nifedipine were 113.9 and 18.1 nM, respectively. We conclude that MPC-1304 suppress the L-type Ca2+ channel with slow kinetics in a voltage- and frequency-dependent manner, which might be caused by its high affinity to the activated as well as to the inactivated state of the channel.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009543 Nifedipine A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure. Adalat,BAY-a-1040,Bay-1040,Cordipin,Cordipine,Corinfar,Fenigidin,Korinfar,Nifangin,Nifedipine Monohydrochloride,Nifedipine-GTIS,Procardia,Procardia XL,Vascard,BAY a 1040,BAYa1040,Bay 1040,Bay1040,Monohydrochloride, Nifedipine,Nifedipine GTIS
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D004095 Dihydropyridines Pyridine moieties which are partially saturated by the addition of two hydrogen atoms in any position.
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.

Related Publications

A Sunami, and T Kanno, and A Kanda
November 1993, European journal of pharmacology,
A Sunami, and T Kanno, and A Kanda
December 1995, European journal of pharmacology,
A Sunami, and T Kanno, and A Kanda
July 1993, Journal of cardiovascular pharmacology,
A Sunami, and T Kanno, and A Kanda
December 2002, The Journal of physiology,
A Sunami, and T Kanno, and A Kanda
January 1992, Journal of cardiovascular pharmacology,
A Sunami, and T Kanno, and A Kanda
January 1994, Archives internationales de pharmacodynamie et de therapie,
Copied contents to your clipboard!