Evaluation of factors affecting bonding rate of calcium phosphate ceramic coatings for in vivo strain gauge attachment. 1996

J A Szivek, and P L Anderson, and T J Dishongh, and D W DeYoung
Department of Surgery, University of Arizona, Tucson 85724, USA. szivek@ortholab.ahsc.arizona.edu

The aim of this study was to compare the bone-bonding rates of eight calcium phosphate ceramic (CPC) coatings attached to strain gauges, alone and in conjunction with an OP1 device (Creative BioMolecules, Hopkinton, MA) and autologous concentrated pericyte cells. These coatings were studied to develop faster bone bonding to long-term in vivo strain sensors. Characterization of the CPC powders using electron microscopy and X-ray diffraction showed that they had shapes ranging from spherical to rocklike and properties ranging from highly crystalline to amorphous. CPC coated gauges were placed on the femora of young male dogs during aseptic surgery and were initially held in place using resorbable sutures. Test groups were euthanized after 3, 9, and 12 weeks. Both femora of the dogs were explanted and cantilever loaded. Response of the implanted hydroxyapatite (HA) coated gauges were compared to the response of bench-top glued sets of gauges (controls) attached to the contralateral femur and reported as a percentage of the control values. One CPC coating type showed an average response of 30% of controls after 3 weeks, four showed average responses higher than 75% after 9 weeks, and three showed averages higher than 82% after 12 weeks in vivo. Amorphous CPC coatings bonded more quickly than crystalline ones and particle shape had less effect than crystal structure on bonding rates. When either OP1 or autologous concentrated pericyte cells were placed on selected CPC coated gauge surfaces, the CPC5 coated gauges bonded best after 3 weeks with a response of 59%. After the same time period in vivo, CPC3 and CPC7 provided responses of 40 and 16%, respectively. Comparison of a soluble calcium-coated CPC with an uncoated one that had identical crystal structure and similar particle shape indicated that the calcium coating slowed bone bonding substantially in the young dog model. Optical microscopy of stained undecalcified bone sections and backscattered electron imaging indicated bone formation at all bone-HA interfaces and an increase in the number of areas of bone remodeling adjacent to the gauge at all time periods. Gross bone remodeling due to strain gauge placement was only observed near the distalmost cell-seeded strain gauges. Selection of the type of coating and enhancement system can accelerate bone bonding to strain sensors but must be tailored to the bone of the model in which it is being used. Augmentation of CPC coatings with cells or OP1 resulted in variable enhancement of the bonding rate and depended on the CPC and the enhancement system.

UI MeSH Term Description Entries
D008297 Male Males
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D002130 Calcium Phosphates Calcium salts of phosphoric acid. These compounds are frequently used as calcium supplements. Phosphates, Calcium
D002516 Ceramics Products made by baking or firing nonmetallic minerals (clay and similar materials). In making dental restorations or parts of restorations the material is fused porcelain. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed & Boucher's Clinical Dental Terminology, 4th ed) Ceramic
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006882 Hydroxyapatites A group of compounds with the general formula M10(PO4)6(OH)2, where M is barium, strontium, or calcium. The compounds are the principal mineral in phosphorite deposits, biological tissue, human bones, and teeth. They are also used as an anticaking agent and polymer catalysts. (Grant & Hackh's Chemical Dictionary, 5th ed) Hydroxyapatite Derivatives,Derivatives, Hydroxyapatite
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic

Related Publications

J A Szivek, and P L Anderson, and T J Dishongh, and D W DeYoung
June 1997, Biomaterials,
J A Szivek, and P L Anderson, and T J Dishongh, and D W DeYoung
February 2022, Dental materials : official publication of the Academy of Dental Materials,
J A Szivek, and P L Anderson, and T J Dishongh, and D W DeYoung
June 2003, Journal of dental research,
J A Szivek, and P L Anderson, and T J Dishongh, and D W DeYoung
April 2013, Materials science & engineering. C, Materials for biological applications,
J A Szivek, and P L Anderson, and T J Dishongh, and D W DeYoung
July 2016, Materials science & engineering. C, Materials for biological applications,
J A Szivek, and P L Anderson, and T J Dishongh, and D W DeYoung
January 1998, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine,
J A Szivek, and P L Anderson, and T J Dishongh, and D W DeYoung
August 1998, Biomaterials,
J A Szivek, and P L Anderson, and T J Dishongh, and D W DeYoung
March 1973, Calcified tissue research,
J A Szivek, and P L Anderson, and T J Dishongh, and D W DeYoung
June 2006, Biomaterials,
J A Szivek, and P L Anderson, and T J Dishongh, and D W DeYoung
May 1979, Plastic and reconstructive surgery,
Copied contents to your clipboard!