Individual axon morphology and thalamocortical topography in developing rat somatosensory cortex. 1996

S M Catalano, and R T Robertson, and H P Killackey
Department of Anatomy and Neurobiology, University of California, Irvine 92717, USA.

The morphology of individual thalamocortical axons in developing rat primary somatosensory cortex was studied using lipophilic tracers. Anterograde labeling with lipophilic dyes demonstrated a topographical organization of thalamocortical projections exiting the thalamus as early as embryonic day (E) 16; retrograde labeling studies demonstrated topography of these projections as they reached the cortex as early as E18. At E17, axons course tangentially within the intermediate zone and turn or branch near the deepest layer of cortex (layer VIb), suggesting the presence of guidance cues in this region. Axons appear to grow and branch progressively within layers VIb and VIa during the following days; axons in the intermediate zone may give rise to radially directed branches. Individual axons appear to grow steadily and progressively into the cortex, with the leading front of axons at the transition zone between the cortical plate (CP) and the differentiating cortical layers. At birth (P0), thalamocortical axons extend radially through layers VIa and V and emit branches within these layers; some axons reach the CP. By P1, layer IV has begun to differentiate and axons begin to form a few simple branches in the vicinity of the layer IV cells. Over the ensuing week, axons generate more branches within layer IV, but the tangential extent of individual axon arbors does not exceed the width of a barrel. By P7, individual axons overlap within barrel clusters, and individual axons span the width of a cluster. These observations indicate that thalamic afferents develop by progressive growth of arbors that remain spatially restricted, rather than by overbranching and retracting arbors.

UI MeSH Term Description Entries
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary
D013788 Thalamus Paired bodies containing mostly GRAY MATTER and forming part of the lateral wall of the THIRD VENTRICLE of the brain. Thalamencephalon,Thalamencephalons
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

S M Catalano, and R T Robertson, and H P Killackey
August 1998, Neuron,
S M Catalano, and R T Robertson, and H P Killackey
October 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S M Catalano, and R T Robertson, and H P Killackey
October 1999, Journal of neurobiology,
S M Catalano, and R T Robertson, and H P Killackey
May 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S M Catalano, and R T Robertson, and H P Killackey
January 1985, Brain research,
S M Catalano, and R T Robertson, and H P Killackey
May 2012, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S M Catalano, and R T Robertson, and H P Killackey
January 2012, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S M Catalano, and R T Robertson, and H P Killackey
January 2020, Neuroscience letters,
S M Catalano, and R T Robertson, and H P Killackey
December 1993, Neurological research,
S M Catalano, and R T Robertson, and H P Killackey
January 1991, Neuroscience,
Copied contents to your clipboard!