A nonlinear Hebbian network that learns to detect disparity in random-dot stereograms. 1996

C W Lee, and B A Olshausen
Washington University School of Medicine, St. Louis, MO 63110, USA.

An intrinsic limitation of linear, Hebbian networks is that they are capable of learning only from the linear pairwise correlations within an input stream. To explore what higher forms of structure could be learned with a nonlinear Hebbian network, we constructed a model network containing a simple form of nonlinearity and we applied it to the problem of learning to detect the disparities present in random-dot stereograms. The network consists of three layers, with nonlinear sigmoidal activation functions in the second-layer units. The nonlinearities allow the second layer to transform the pixel-based representation in the input layer into a new representation based on coupled pairs of left-right inputs. The third layer of the network then clusters patterns occurring on the second-layer outputs according to their disparity via a standard competitive learning rule. Analysis of the network dynamics shows that the second-layer units' nonlinearities interact with the Hebbian learning rule to expand the region over which pairs of left-right inputs are stable. The learning rule is neurobiologically inspired and plausible, and the model may shed light on how the nervous system learns to use coincidence detection in general.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D010363 Pattern Recognition, Automated In INFORMATION RETRIEVAL, machine-sensing or identification of visible patterns (shapes, forms, and configurations). (Harrod's Librarians' Glossary, 7th ed) Automated Pattern Recognition,Pattern Recognition System,Pattern Recognition Systems
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D001185 Artificial Intelligence Theory and development of COMPUTER SYSTEMS which perform tasks that normally require human intelligence. Such tasks may include speech recognition, LEARNING; VISUAL PERCEPTION; MATHEMATICAL COMPUTING; reasoning, PROBLEM SOLVING, DECISION-MAKING, and translation of language. AI (Artificial Intelligence),Computer Reasoning,Computer Vision Systems,Knowledge Acquisition (Computer),Knowledge Representation (Computer),Machine Intelligence,Computational Intelligence,Acquisition, Knowledge (Computer),Computer Vision System,Intelligence, Artificial,Intelligence, Computational,Intelligence, Machine,Knowledge Representations (Computer),Reasoning, Computer,Representation, Knowledge (Computer),System, Computer Vision,Systems, Computer Vision,Vision System, Computer,Vision Systems, Computer
D014794 Visual Fields The total area or space visible in a person's peripheral vision with the eye looking straightforward. Field, Visual,Fields, Visual,Visual Field
D016000 Cluster Analysis A set of statistical methods used to group variables or observations into strongly inter-related subgroups. In epidemiology, it may be used to analyze a closely grouped series of events or cases of disease or other health-related phenomenon with well-defined distribution patterns in relation to time or place or both. Clustering,Analyses, Cluster,Analysis, Cluster,Cluster Analyses,Clusterings
D016571 Neural Networks, Computer A computer architecture, implementable in either hardware or software, modeled after biological neural networks. Like the biological system in which the processing capability is a result of the interconnection strengths between arrays of nonlinear processing nodes, computerized neural networks, often called perceptrons or multilayer connectionist models, consist of neuron-like units. A homogeneous group of units makes up a layer. These networks are good at pattern recognition. They are adaptive, performing tasks by example, and thus are better for decision-making than are linear learning machines or cluster analysis. They do not require explicit programming. Computational Neural Networks,Connectionist Models,Models, Neural Network,Neural Network Models,Neural Networks (Computer),Perceptrons,Computational Neural Network,Computer Neural Network,Computer Neural Networks,Connectionist Model,Model, Connectionist,Model, Neural Network,Models, Connectionist,Network Model, Neural,Network Models, Neural,Network, Computational Neural,Network, Computer Neural,Network, Neural (Computer),Networks, Computational Neural,Networks, Computer Neural,Networks, Neural (Computer),Neural Network (Computer),Neural Network Model,Neural Network, Computational,Neural Network, Computer,Neural Networks, Computational,Perceptron
D017711 Nonlinear Dynamics The study of systems which respond disproportionately (nonlinearly) to initial conditions or perturbing stimuli. Nonlinear systems may exhibit "chaos" which is classically characterized as sensitive dependence on initial conditions. Chaotic systems, while distinguished from more ordered periodic systems, are not random. When their behavior over time is appropriately displayed (in "phase space"), constraints are evident which are described by "strange attractors". Phase space representations of chaotic systems, or strange attractors, usually reveal fractal (FRACTALS) self-similarity across time scales. Natural, including biological, systems often display nonlinear dynamics and chaos. Chaos Theory,Models, Nonlinear,Non-linear Dynamics,Non-linear Models,Chaos Theories,Dynamics, Non-linear,Dynamics, Nonlinear,Model, Non-linear,Model, Nonlinear,Models, Non-linear,Non linear Dynamics,Non linear Models,Non-linear Dynamic,Non-linear Model,Nonlinear Dynamic,Nonlinear Model,Nonlinear Models,Theories, Chaos,Theory, Chaos

Related Publications

C W Lee, and B A Olshausen
January 1987, Biological cybernetics,
C W Lee, and B A Olshausen
September 1987, Perception & psychophysics,
C W Lee, and B A Olshausen
January 1974, Vision research,
C W Lee, and B A Olshausen
January 1979, Vision research,
C W Lee, and B A Olshausen
February 1980, Journal of experimental child psychology,
C W Lee, and B A Olshausen
August 2016, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C W Lee, and B A Olshausen
January 1992, Perception,
C W Lee, and B A Olshausen
February 1996, Vision research,
Copied contents to your clipboard!