Changes in HL-60 cell deformability during differentiation induced by DMSO. 1996

M A Tsai, and R E Waugh, and P C Keng
Department of Biophysics, University of Rochester School of Medicine and Dentistry, NY 14642, USA. mts1@medinfo.rochester.edu

We have investigated changes in cellular deformability during promyelocytic leukemic HL-60 cell maturation. HL-60 cells were induced to mature with 1.25% dimethyl sulfoxide. Cellular deformability was evaluated by single-cell micropipette aspiration at one day, four days and seven days after induction. HL-60 cells were found to decrease in size and increase in deformability with maturation. When tested under the same aspiration pressures (0.5-1.3 kPa), cytoplasmic viscosity was found to vary from 210 to 85 Pa.s for cells prior to induction; it varied from 85 to 40 Pa.s for cells seven days after induction. Further, cytoplasmic viscosity exhibits power-law dependence on shear rate, mu = mu c (gamma m/gamma c)-b, where mu is cytoplasmic viscosity, gamma m is mean shear rate during cell entry, mu c is the characteristic viscosity at the characteristic shear rate, gamma c, and b is a material coefficient. Cells of all maturities showed similar dependence on shear rate (b approximately 0.5), but the characteristic viscosity decreased with maturation except for Day 1. When gamma c was set to 1 s-1, mu c = 236 +/- 5 Pa.s for cells prior to induction, mu c = 239 +/- 7, 209 +/- 7 and 175 +/- 14 Pa.s for cells on Days 1, 4 and 7 of induction, respectively.

UI MeSH Term Description Entries
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004121 Dimethyl Sulfoxide A highly polar organic liquid, that is used widely as a chemical solvent. Because of its ability to penetrate biological membranes, it is used as a vehicle for topical application of pharmaceuticals. It is also used to protect tissue during CRYOPRESERVATION. Dimethyl sulfoxide shows a range of pharmacological activity including analgesia and anti-inflammation. DMSO,Dimethyl Sulphoxide,Dimethylsulfoxide,Dimethylsulphinyl,Dimethylsulphoxide,Dimexide,Rheumabene,Rimso,Rimso 100,Rimso-50,Sclerosol,Sulfinylbis(methane),Rimso 50,Rimso50,Sulfoxide, Dimethyl,Sulphoxide, Dimethyl
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014783 Viscosity The resistance that a gaseous or liquid system offers to flow when it is subjected to shear stress. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Viscosities
D016192 Resting Phase, Cell Cycle A quiescent state of cells during G1 PHASE. G0 Phase,G0 Phases,Phase, G0,Phases, G0
D016193 G1 Phase The period of the CELL CYCLE preceding DNA REPLICATION in S PHASE. Subphases of G1 include "competence" (to respond to growth factors), G1a (entry into G1), G1b (progression), and G1c (assembly). Progression through the G1 subphases is effected by limiting growth factors, nutrients, or inhibitors. First Gap Phase,G1a Phase,G1b Phase,Gap Phase 1,First Gap Phases,G1 Phases,G1a Phases,G1b Phases,Gap Phase, First,Gap Phases, First,Phase 1, Gap,Phase, First Gap,Phase, G1,Phase, G1a,Phase, G1b,Phases, First Gap,Phases, G1,Phases, G1a,Phases, G1b
D018056 Hemorheology The deformation and flow behavior of BLOOD and its elements i.e., PLASMA; ERYTHROCYTES; WHITE BLOOD CELLS; and BLOOD PLATELETS. Hemorrheology
D018922 HL-60 Cells A promyelocytic cell line derived from a patient with ACUTE PROMYELOCYTIC LEUKEMIA. HL-60 cells lack specific markers for LYMPHOID CELLS but express surface receptors for FC FRAGMENTS and COMPLEMENT SYSTEM PROTEINS. They also exhibit phagocytic activity and responsiveness to chemotactic stimuli. (From Hay et al., American Type Culture Collection, 7th ed, pp127-8) HL60 Cells,Cell, HL60,Cells, HL60,HL 60 Cells,HL-60 Cell,HL60 Cell

Related Publications

M A Tsai, and R E Waugh, and P C Keng
January 1992, Biorheology,
M A Tsai, and R E Waugh, and P C Keng
January 1988, Experimental cell research,
M A Tsai, and R E Waugh, and P C Keng
March 1992, Cancer letters,
M A Tsai, and R E Waugh, and P C Keng
April 1990, Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae,
M A Tsai, and R E Waugh, and P C Keng
January 2012, Asian Pacific journal of cancer prevention : APJCP,
M A Tsai, and R E Waugh, and P C Keng
September 1994, Biochemical and biophysical research communications,
Copied contents to your clipboard!