The effect of aging and pressure on the specific hydraulic conductivity of the aortic wall. 1996

M D Whale, and A J Grodzinsky, and M Johnson
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge 02139, USA.

We measured the specific hydraulic conductivity (K) of the human and bovine aortic wall, two tissues for which K has not been previously reported in the literature, and examined the effects of aging (human) and development (bovine) on K. As part of the study, we also examined the effects of mounting the tissue in a flat or cylindrical configuration and the effects of perfusion pressure. With aging, in the human, we found a modest increase of K with age in a flat geometry; this trend was not apparent in a limited number of measurements in a cylindrical geometry. No significant dependence of K on developmental stage was found in the bovine aortic wall perfused in either a flat or cylindrical geometry. Our results indicate that aging and developmental changes of the aortic extracellular matrix have minimal effects on its hydrodynamic transport properties as measured. Mounting geometry for the aorta has been a concern reported in the literature since Yamartino et al. (1974) reported that K in the rabbit was 10-fold lower when measured in a flat geometry than in a cylindrical geometry. We found mounting geometry to make only a small difference in the calf and the cow, (Kflat approximately 2/3 of Kcylindrical), and in the human, we found K to be somewhat higher in the flat geometry than in the cylindrical geometry. Higher perfusion pressures decreased K of bovine tissue in the flat geometry, but pressure was not found to have a significant effect on K in the cylindrical geometry. An analytical model demonstrated that the anisotropic nature of the aortic wall allows it to be compressible (water-expressing) and yet remain at nearly constant tissue volume as the aorta is pressurized in a cylindrical geometry.

UI MeSH Term Description Entries
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001011 Aorta The main trunk of the systemic arteries. Aortas
D012212 Rheology The study of the deformation and flow of matter, usually liquids or fluids, and of the plastic flow of solids. The concept covers consistency, dilatancy, liquefaction, resistance to flow, shearing, thixotrophy, and VISCOSITY. Flowmetry,Velocimetry,Velocimetries

Related Publications

M D Whale, and A J Grodzinsky, and M Johnson
February 1992, Arteriosclerosis and thrombosis : a journal of vascular biology,
M D Whale, and A J Grodzinsky, and M Johnson
January 2023, The Science of the total environment,
M D Whale, and A J Grodzinsky, and M Johnson
August 2002, Cryobiology,
M D Whale, and A J Grodzinsky, and M Johnson
January 1991, Biorheology,
M D Whale, and A J Grodzinsky, and M Johnson
October 1979, Plant physiology,
M D Whale, and A J Grodzinsky, and M Johnson
January 1984, Biorheology,
M D Whale, and A J Grodzinsky, and M Johnson
July 1999, Journal of applied physiology (Bethesda, Md. : 1985),
M D Whale, and A J Grodzinsky, and M Johnson
January 1981, The American journal of physiology,
M D Whale, and A J Grodzinsky, and M Johnson
February 1987, The American journal of physiology,
M D Whale, and A J Grodzinsky, and M Johnson
January 1969, Biochimica et biophysica acta,
Copied contents to your clipboard!