Tolerance to anticonvulsant effects of some benzodiazepines in genetically epilepsy prone rats. 1996

G De Sarro, and E D Di Paola, and U Aguglia, and A de Sarro
Department of Experimental Medicine, School of Medicine, Catanzaro, Italy.

The development of tolerance to the anticonvulsant effects of clonazepam, clobazam, and diazepam were studied in genetically epilepsy-prone rats following intraperitoneal (IP) or oral administration. The anticonvulsant effects were evaluated on seizures evoked by means of auditory stimulation (109 dB, 12-16 kHz). All compounds showed 60 min after IP injection antiseizure activity with ED50 against clonus of 0.24 mumol kg-1 for clonazepam, 0.72 mumol kg-1 for diazepam, and 3.9 mumol kg-1 for clobazam. After 120 min of oral administration the ED50 against clonus of 2.37 mumol kg-1 for clonazepam, 15.8 mumol kg-1 for diazepam, and 30 mumol kg-1 for clobazam. The dose chosen for the chronic treatment were 2.5 mumol kg-1 for clonazepam, 15 mumol kg-1 for diazepam, and 30 mumol kg-1 for clobazam. The animals were treated three times daily for 4 or 6 weeks. Auditory stimulation was administered 60 min after drug IP injection on various days. During treatment, tolerance was observed as a loss of drug anticonvulsant effects. No changes of occurrence of audiogenic seizures was observed in rats treated with vehicle. Tolerance to the anticonvulsant activity developed most rapidly during clobazam treatment, less rapidly following diazepam treatment, and most slowly during clonazepam treatment. Sixty minutes after IP injection on various days of chronic treatment the motor impairment induced by these benzodiazepines was also studied by means of a rotarod apparatus. The tolerance to the motor impairment developed more rapidly than the anticonvulsant effects. The response to auditory stimulation to benzodiazepines was stopped 24 and 48 h after chronic treatment with these compounds, showing no residual drug effects and that rats were still tolerant. The genetically epilepsy-prone rats is a reliable and sensitive model for studying long-term effects of anticonvulsant drugs.

UI MeSH Term Description Entries
D007274 Injections, Intraperitoneal Forceful administration into the peritoneal cavity of liquid medication, nutrient, or other fluid through a hollow needle piercing the abdominal wall. Intraperitoneal Injections,Injection, Intraperitoneal,Intraperitoneal Injection
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002998 Clonazepam An anticonvulsant used for several types of seizures, including myotonic or atonic seizures, photosensitive epilepsy, and absence seizures, although tolerance may develop. It is seldom effective in generalized tonic-clonic or partial seizures. The mechanism of action appears to involve the enhancement of GAMMA-AMINOBUTYRIC ACID receptor responses. 2H-1,4-Benzodiazepin-2-one, 5-(2-chlorophenyl)-1,3-dihydro-7-nitro-,Klonopin,Antelepsin,Rivotril,Ro 5-4023,Ro 54023
D003975 Diazepam A benzodiazepine with anticonvulsant, anxiolytic, sedative, muscle relaxant, and amnesic properties and a long duration of action. Its actions are mediated by enhancement of GAMMA-AMINOBUTYRIC ACID activity. 7-Chloro-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepin-2-one,Apaurin,Diazemuls,Faustan,Relanium,Seduxen,Sibazon,Stesolid,Valium
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004361 Drug Tolerance Progressive diminution of the susceptibility of a human or animal to the effects of a drug, resulting from its continued administration. It should be differentiated from DRUG RESISTANCE wherein an organism, disease, or tissue fails to respond to the intended effectiveness of a chemical or drug. It should also be differentiated from MAXIMUM TOLERATED DOSE and NO-OBSERVED-ADVERSE-EFFECT LEVEL. Drug Tolerances,Tolerance, Drug,Tolerances, Drug
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders

Related Publications

G De Sarro, and E D Di Paola, and U Aguglia, and A de Sarro
January 1992, Advances in biochemical psychopharmacology,
G De Sarro, and E D Di Paola, and U Aguglia, and A de Sarro
November 1998, Pharmacology, biochemistry, and behavior,
G De Sarro, and E D Di Paola, and U Aguglia, and A de Sarro
January 1991, Epilepsy research. Supplement,
G De Sarro, and E D Di Paola, and U Aguglia, and A de Sarro
December 2004, Neuropharmacology,
G De Sarro, and E D Di Paola, and U Aguglia, and A de Sarro
July 1993, Epilepsy research,
G De Sarro, and E D Di Paola, and U Aguglia, and A de Sarro
January 1990, General pharmacology,
G De Sarro, and E D Di Paola, and U Aguglia, and A de Sarro
July 1997, Naunyn-Schmiedeberg's archives of pharmacology,
G De Sarro, and E D Di Paola, and U Aguglia, and A de Sarro
April 1986, Pharmacology, biochemistry, and behavior,
G De Sarro, and E D Di Paola, and U Aguglia, and A de Sarro
May 1992, European journal of pharmacology,
G De Sarro, and E D Di Paola, and U Aguglia, and A de Sarro
August 1995, British journal of pharmacology,
Copied contents to your clipboard!