Combined eye-head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys. 1996

E G Freedman, and T R Stanford, and D L Sparks
Institute of Neurological Sciences, University of Pennsylvania, Philadelphia 19104-6196, USA.

1. We electrically stimulated the intermediate and deep layers of the superior colliculus (SC) in two rhesus macaques free to move their heads both vertically and horizontally (head unrestrained). Stimulation of the primate SC can elicit high-velocity, combined, eye-head gaze shifts that are similar to visually guided gaze shifts of comparable amplitude and direction. The amplitude of gaze shifts produced by collicular stimulation depends on the site of stimulation and on the parameters of stimulation (frequency, current, and duration of the stimulation train). 2. The maximal amplitude gaze shifts, produced by electrical stimulation at 56 sites in the SC of two rhesus monkeys, ranged in amplitude from approximately 7 to approximately 80 deg. Because the head was unrestrained, stimulation-induced gaze shifts often included movements of the head. Head movements produced at the 56 stimulation sites ranged in amplitude from 0 to approximately 70 deg. 3. The relationships between peak velocity and amplitude and between duration and amplitude of stimulation-induced head movements and gaze shifts were comparable with the relationships observed during visually guided gaze shifts. The relative contributions of the eyes and head to visually guided and stimulation-induced gaze shifts were also similar. 4. As was true for visually guided gaze shifts, the head contribution to stimulation-induced gaze shifts depended on the position of the eyes relative to the head at the onset of stimulation. When the eyes were deviated in the direction of the ensuing gaze shift, the head contribution increased and the latency to head movement onset was decreased. 5. We systematically altered the duration of stimulation trains (10-400 ms) while stimulation frequency and current remained constant. Increases in stimulation duration systematically increased the amplitude of the evoked gaze shift until a site specific maximal amplitude was reached. Further increases in stimulation duration did not increase gaze amplitude. There was a high correlation between the end of the stimulation train and the end of the evoked gaze shift for movements smaller than the site-specific maximal amplitude. 6. Unlike the effects of stimulation duration on gaze amplitude, the amplitude and duration of evoked head movements did not saturate for the range of durations tested (10-400 ms), but continued to increase linearly with increases in stimulation duration. 7. The frequency of stimulation was systematically varied (range: 63-1,000 Hz) while other stimulation parameters remained constant. The velocity of evoked gaze shifts was related to the frequency of stimulation; higher stimulation frequencies resulted in higher peak velocities. The maximal, site-specific amplitude was independent of stimulation frequency. 8. When stimulating a single collicular site using identical stimulation parameters, the amplitude and direction of stimulation-induced gaze shifts, initiated from different initial positions, were relatively constant. In contrast, the amplitude and direction of the eye component of these fixed vector gaze shifts depended upon the initial position of the eyes in the orbits; the endpoints of the eye movements converged on an orbital region, or "goal," that depended on the site of collicular stimulation. 9. When identical stimulation parameters were used and when the eyes were centered initially in the orbits, the gaze shifts produced by caudal collicular stimulation when the head was restrained were typically smaller than those evoked from the same site when the head was unrestrained. This attenuation occurred because stimulation drove the eyes to approximately the same orbital position when the head was restrained or unrestrained. Thus movements produced when the head was restrained were reduced in amplitude by approximately the amount that the head would have contributed if free to move. 10. When the head was restrained, only the eye component of the intended gaze shift

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D012149 Restraint, Physical Use of a device for the purpose of controlling movement of all or part of the body. Splinting and casting are FRACTURE FIXATION. Immobilization, Physical,Physical Restraint,Physical Immobilization,Physical Restraints,Restraints, Physical
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005133 Eye Movements Voluntary or reflex-controlled movements of the eye. Eye Movement,Movement, Eye,Movements, Eye
D005403 Fixation, Ocular Positioning and accommodation of eyes that allows the image to be brought into place on the FOVEA CENTRALIS of each eye. Focusing, Ocular,Ocular Fixation,Eye Gaze,Eye Gazes,Gaze, Eye,Gazes, Eye,Ocular Focusing
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013477 Superior Colliculi The anterior pair of the quadrigeminal bodies which coordinate the general behavioral orienting responses to visual stimuli, such as whole-body turning, and reaching. Colliculus, Superior,Optic Lobe, Human,Optic Lobe, Mammalian,Optic Tectum,Anterior Colliculus,Superior Colliculus,Tectum, Optic,Colliculi, Superior,Colliculus, Anterior,Human Optic Lobe,Human Optic Lobes,Mammalian Optic Lobe,Mammalian Optic Lobes,Optic Lobes, Human,Optic Lobes, Mammalian,Optic Tectums,Tectums, Optic
D019416 Head Movements Voluntary or involuntary motion of head that may be relative to or independent of body; includes animals and humans. Head Movement,Movement, Head,Movements, Head

Related Publications

E G Freedman, and T R Stanford, and D L Sparks
May 1997, Journal of neurophysiology,
E G Freedman, and T R Stanford, and D L Sparks
December 2005, Experimental brain research,
E G Freedman, and T R Stanford, and D L Sparks
October 2004, Journal of neurophysiology,
E G Freedman, and T R Stanford, and D L Sparks
September 2023, Communications biology,
E G Freedman, and T R Stanford, and D L Sparks
July 1975, Experimental brain research,
E G Freedman, and T R Stanford, and D L Sparks
January 2022, Frontiers in computational neuroscience,
E G Freedman, and T R Stanford, and D L Sparks
January 2019, Progress in brain research,
E G Freedman, and T R Stanford, and D L Sparks
January 1995, Experimental brain research,
Copied contents to your clipboard!