Differential activation of the ERK, JNK, and p38 mitogen-activated protein kinases by CD40 and the B cell antigen receptor. 1996

C L Sutherland, and A W Heath, and S L Pelech, and P R Young, and M R Gold
Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.

B cell antigen receptor (BCR)-induced apoptosis in the WEHI-231 B lymphoma cell line can be prevented by engaging CD40. We have used this cell line to investigate the role of mitogen-activated protein (MAP) kinases in integrating BCR and CD40 signaling. Each of the three types of MAP kinases, the extracellular signal-regulated kinases (ERKs), the c-Jun N-terminal kinases (JNKs), and p38, phosphorylates a distinct set of transcription factors. Thus, activating different combinations of MAP kinases could lead to distinct biological responses. We found that BCR engagement in WEHI-231 cells caused a 15- to 20-fold activation of ERK2 and a 2- to 3-fold stimulation of ERK1. CD40 did not activate either of these kinases, nor did it affect BCR-induced ERK activation. In contrast, CD40 engagement caused a 50- to 70-fold increase in JNK activity. BCR cross-linking caused a modest (4- to 8-fold) increase in JNK activity by itself and also potentiated CD40-induced JNK activation. Finally, CD40 caused strong activation of the p38 kinase as well as MAPKAP kinase-2, a downstream target of p38. BCR engagement caused only weak activation of the p38 pathway. In summary, the BCR strongly activates ERK2 and weakly activates ERK1, JNK, and p38, while CD40 markedly stimulates the JNK and p38 kinases. Thus, activation of only ERK2 correlates with apoptosis in WEHI-231 cells, whereas full activation of all three MAP kinase pathways correlates with cell survival. The role of MAP kinases in regulating these responses remains to be tested.

UI MeSH Term Description Entries
D007075 Immunoglobulin M A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally was called a macroglobulin. Gamma Globulin, 19S,IgM,IgM Antibody,IgM1,IgM2,19S Gamma Globulin,Antibody, IgM
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011947 Receptors, Antigen, B-Cell IMMUNOGLOBULINS on the surface of B-LYMPHOCYTES. Their MESSENGER RNA contains an EXON with a membrane spanning sequence, producing immunoglobulins in the form of type I transmembrane proteins as opposed to secreted immunoglobulins (ANTIBODIES) which do not contain the membrane spanning segment. Antigen Receptors, B-Cell,B-Cell Antigen Receptor,B-Cell Antigen Receptors,Surface Immunoglobulin,Immunoglobulins, Membrane-Bound,Immunoglobulins, Surface,Membrane Bound Immunoglobulin,Membrane-Bound Immunoglobulins,Receptors, Antigen, B Cell,Surface Immunoglobulins,Antigen Receptor, B-Cell,Antigen Receptors, B Cell,B Cell Antigen Receptor,B Cell Antigen Receptors,Bound Immunoglobulin, Membrane,Immunoglobulin, Membrane Bound,Immunoglobulin, Surface,Immunoglobulins, Membrane Bound,Membrane Bound Immunoglobulins,Receptor, B-Cell Antigen,Receptors, B-Cell Antigen
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000888 Antibodies, Anti-Idiotypic Antibodies which react with the individual structural determinants (idiotopes) on the variable region of other antibodies. Anti-Antibodies,Anti-Idiotype Antibodies,Antibodies, Internal Image,Antigamma Globulin Antibodies,Antiglobulins,Anti Antibodies,Anti-gamma Globulin Antibodies,Anti Idiotype Antibodies,Anti gamma Globulin Antibodies,Anti-Idiotypic Antibodies,Antibodies, Anti,Antibodies, Anti Idiotypic,Antibodies, Anti-Idiotype,Antibodies, Anti-gamma Globulin,Antibodies, Antigamma Globulin,Globulin Antibodies, Anti-gamma,Globulin Antibodies, Antigamma,Image Antibodies, Internal,Internal Image Antibodies
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

C L Sutherland, and A W Heath, and S L Pelech, and P R Young, and M R Gold
December 2002, Science (New York, N.Y.),
C L Sutherland, and A W Heath, and S L Pelech, and P R Young, and M R Gold
December 1994, Science (New York, N.Y.),
C L Sutherland, and A W Heath, and S L Pelech, and P R Young, and M R Gold
September 1999, European journal of immunology,
C L Sutherland, and A W Heath, and S L Pelech, and P R Young, and M R Gold
January 2000, Methods in enzymology,
C L Sutherland, and A W Heath, and S L Pelech, and P R Young, and M R Gold
May 2016, Neurochemical research,
C L Sutherland, and A W Heath, and S L Pelech, and P R Young, and M R Gold
January 2001, Methods in enzymology,
C L Sutherland, and A W Heath, and S L Pelech, and P R Young, and M R Gold
February 2017, Investigative ophthalmology & visual science,
C L Sutherland, and A W Heath, and S L Pelech, and P R Young, and M R Gold
June 2007, Journal of cell communication and signaling,
C L Sutherland, and A W Heath, and S L Pelech, and P R Young, and M R Gold
July 2000, Carcinogenesis,
C L Sutherland, and A W Heath, and S L Pelech, and P R Young, and M R Gold
February 2004, Journal of neuroendocrinology,
Copied contents to your clipboard!