Substrate specificity of recombinant osteoclast-specific cathepsin K from rabbits. 1996

K Aibe, and H Yazawa, and K Abe, and K Teramura, and M Kumegawa, and H Kawashima, and K Honda
Drug Serendipity Research Laboratories, Yamanouchi Pharmaceutical Co., Ltd., Ibaraki, Japan.

A cDNA clone encoding the rabbit cysteine proteinase cathepsin K, which is predominantly expressed in osteoclasts and is closely related to cathepsins L (EC 3.4.22.15) and S (EC 3.4.22.27) [Tezuka K., Tezuka Y., Maejima A., Sato T., Nemoto K., Kamioka H., Hakeda Y., Kumegawa M., J. Biol. Chem., 269, 1106 (1994)], was expressed at high levels in Escherichia coli in a T7 expression system. The insoluble recombinant enzyme was solubilized in urea and refolded at an alkaline pH. Cathepsin K (37-kDa) was purified by gel filtration and its enzymatic characteristics were determined. The enzymatic activity of cathepsin K was strongly inhibited by cysteine proteinase inhibitors and its optimal pH was pH 5.5. Synthetic substrate benzyloxycarbonyl-Phe-Arg-7-(4-methyl)coumaryl-amide, which is hydrolyzed by cathepsins L and S, was also cleaved by cathepsin K. On the other hand, benzyloxycarbonyl-Gly-Pro-Arg-7-(4-methyl)coumaryl-amide was the most suitable substrate for cathepsin K, but was hardly hydrolyzed by cathepsin L. The substrate specificity of cathepsin K, as determined using various chemogenic substrates, showed different characteristics from cathepsins L and S.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010010 Osteoclasts A large multinuclear cell associated with the BONE RESORPTION. An odontoclast, also called cementoclast, is cytomorphologically the same as an osteoclast and is involved in CEMENTUM resorption. Odontoclasts,Cementoclast,Cementoclasts,Odontoclast,Osteoclast
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002403 Cathepsins A group of lysosomal proteinases or endopeptidases found in aqueous extracts of a variety of animal tissues. They function optimally within an acidic pH range. The cathepsins occur as a variety of enzyme subtypes including SERINE PROTEASES; ASPARTIC PROTEINASES; and CYSTEINE PROTEASES. Cathepsin
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

K Aibe, and H Yazawa, and K Abe, and K Teramura, and M Kumegawa, and H Kawashima, and K Honda
October 2004, Archives of biochemistry and biophysics,
K Aibe, and H Yazawa, and K Abe, and K Teramura, and M Kumegawa, and H Kawashima, and K Honda
February 2013, The Journal of clinical investigation,
K Aibe, and H Yazawa, and K Abe, and K Teramura, and M Kumegawa, and H Kawashima, and K Honda
May 1996, The Journal of biological chemistry,
K Aibe, and H Yazawa, and K Abe, and K Teramura, and M Kumegawa, and H Kawashima, and K Honda
October 2008, Journal of biochemistry,
K Aibe, and H Yazawa, and K Abe, and K Teramura, and M Kumegawa, and H Kawashima, and K Honda
September 2003, Cell biochemistry and function,
K Aibe, and H Yazawa, and K Abe, and K Teramura, and M Kumegawa, and H Kawashima, and K Honda
February 2019, The Biochemical journal,
K Aibe, and H Yazawa, and K Abe, and K Teramura, and M Kumegawa, and H Kawashima, and K Honda
January 1981, Acta biologica et medica Germanica,
K Aibe, and H Yazawa, and K Abe, and K Teramura, and M Kumegawa, and H Kawashima, and K Honda
April 2005, Biochemical and biophysical research communications,
K Aibe, and H Yazawa, and K Abe, and K Teramura, and M Kumegawa, and H Kawashima, and K Honda
March 2005, Archives of biochemistry and biophysics,
K Aibe, and H Yazawa, and K Abe, and K Teramura, and M Kumegawa, and H Kawashima, and K Honda
July 1999, Bioorganic & medicinal chemistry letters,
Copied contents to your clipboard!