Myotonic dystrophy: will the real gene please step forward! 1996

S Harris, and C Moncrieff, and K Johnson
Division of Molecular Genetics, IBLS, University of Glasgow, Anderson College, UK.

The mutation underlying myotonic dystrophy (DM) was identified at the end of 1991 amidst great rejoicing from the patients supporting the research and, not least, from those who spent so long searching for it. Subsequently, the molecular genetic phenomena associated with DM have been clearly explained by the transmission behaviour of the expanding repeat, which remains the only mutation that has been described in patients. We understand the molecular basis of anticipation, why the severe congenital form is almost exclusively transmitted by affected mothers and we have widely accepted models of the population genetics of DM. Yet, despite all these clearly explained molecular events, we appear to be hardly any closer to understanding the molecular pathology of DM than when the mutation was first identified. To understand the reason for this, we have to look in detail at the mutation itself, and in particular at the locus and its complex nuances. In doing so, we begin to realise that DM is unique amongst the Mendelianly inherited disorders, in that the mutation, because of its location in a very gene-rich region of the genome, probably simultaneously renders several genes dysfunctional. The somatic heterogeneity of the repeat, coupled with the involvement of several genes, accounts for the pleiotropy observed in the phenotype. Added to this complexity is the uncertainty of the level at which gene dysfunction or gain of function is occurring. It is possibly at the level of DNA/chromatin structure and/or RNA regulation/processing, and all of these pathways may, in different tissues, contribute to the final phenotype.

UI MeSH Term Description Entries
D009223 Myotonic Dystrophy Neuromuscular disorder characterized by PROGRESSIVE MUSCULAR ATROPHY; MYOTONIA, and various multisystem atrophies. Mild INTELLECTUAL DISABILITY may also occur. Abnormal TRINUCLEOTIDE REPEAT EXPANSION in the 3' UNTRANSLATED REGIONS of DMPK PROTEIN gene is associated with Myotonic Dystrophy 1. DNA REPEAT EXPANSION of zinc finger protein-9 gene intron is associated with Myotonic Dystrophy 2. Dystrophia Myotonica,Myotonic Dystrophy, Congenital,Myotonic Myopathy, Proximal,Steinert Disease,Congenital Myotonic Dystrophy,Dystrophia Myotonica 1,Dystrophia Myotonica 2,Myotonia Atrophica,Myotonia Dystrophica,Myotonic Dystrophy 1,Myotonic Dystrophy 2,PROMM (Proximal Myotonic Myopathy),Proximal Myotonic Myopathy,Ricker Syndrome,Steinert Myotonic Dystrophy,Steinert's Disease,Atrophica, Myotonia,Atrophicas, Myotonia,Congenital Myotonic Dystrophies,Disease, Steinert,Disease, Steinert's,Dystrophia Myotonica 2s,Dystrophia Myotonicas,Dystrophica, Myotonia,Dystrophicas, Myotonia,Dystrophies, Congenital Myotonic,Dystrophies, Myotonic,Dystrophy, Congenital Myotonic,Dystrophy, Myotonic,Dystrophy, Steinert Myotonic,Myopathies, Proximal Myotonic,Myopathy, Proximal Myotonic,Myotonia Atrophicas,Myotonia Dystrophicas,Myotonic Dystrophies,Myotonic Dystrophies, Congenital,Myotonic Dystrophy, Steinert,Myotonic Myopathies, Proximal,Myotonica, Dystrophia,Myotonicas, Dystrophia,PROMMs (Proximal Myotonic Myopathy),Proximal Myotonic Myopathies,Steinerts Disease,Syndrome, Ricker
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D005828 Genetics, Population The discipline studying genetic composition of populations and effects of factors such as GENETIC SELECTION, population size, MUTATION, migration, and GENETIC DRIFT on the frequencies of various GENOTYPES and PHENOTYPES using a variety of GENETIC TECHNIQUES. Population Genetics
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated

Related Publications

S Harris, and C Moncrieff, and K Johnson
September 1992, The Behavioral and brain sciences,
S Harris, and C Moncrieff, and K Johnson
November 2002, Trends in parasitology,
S Harris, and C Moncrieff, and K Johnson
October 2002, Science's STKE : signal transduction knowledge environment,
S Harris, and C Moncrieff, and K Johnson
February 1989, Trends in pharmacological sciences,
S Harris, and C Moncrieff, and K Johnson
November 2010, The Medical journal of Australia,
S Harris, and C Moncrieff, and K Johnson
February 1978, Lancet (London, England),
S Harris, and C Moncrieff, and K Johnson
October 2008, Journal of the American College of Cardiology,
S Harris, and C Moncrieff, and K Johnson
January 1979, The Michigan nurse,
S Harris, and C Moncrieff, and K Johnson
April 2011, MGMA connexion,
S Harris, and C Moncrieff, and K Johnson
December 2005, BMC genetics,
Copied contents to your clipboard!