Crystal structure of R-phycoerythrin from Polysiphonia urceolata at 2.8 A resolution. 1996

W R Chang, and T Jiang, and Z L Wan, and J P Zhang, and Z X Yang, and D C Liang
National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China.

The structure of R-phycoerythrin (R-PE) from Polysiphonia urceolata was determined at 2.8 A resolution. The crystals belong to space group R3 with unit cell dimensions of a = b = 189.8 A, c = 60.1 A. The subunit composition of R-PE is (alpha 2 beta 2)3 gamma. The three-dimensional structure of R-PE was solved by the multiple isomorphous replacement method. After several cycles of model building and refinement, the crystallographic R-factor of the final model is 18.0% with data from 10.0 to 2.8 A resolution. The four phycoerythrobilin chromophores alpha 84, alpha 140a, beta 84 and beta 155 in an (alpha beta) unit are each covalently bound to a cysteine residue through ring A. The phycourobilin chromophore is bound to cysteine beta 50 by ring A and bound to cysteine beta 61 by ring D. The ring A and ring D of phycourobilin deviate from the conjugate plane formed by ring B and ring C and the four rings form a boat-shaped structure. R-PE contains a 34 kDa gamma subunit that is assumed to lie in the central channel of the molecular disc (alpha 2 beta 2)3. The energy transfer and relationship between cysteine residues and chromophores are discussed.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D010788 Photosynthesis The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001) Calvin Cycle,Calvin-Benson Cycle,Calvin-Benson-Bassham Cycle,Carbon Fixation, Photosynthetic,Reductive Pentose Phosphate Cycle,Dark Reactions of Photosynthesis,Calvin Benson Bassham Cycle,Calvin Benson Cycle,Cycle, Calvin,Cycle, Calvin-Benson,Cycle, Calvin-Benson-Bassham,Photosynthesis Dark Reaction,Photosynthesis Dark Reactions,Photosynthetic Carbon Fixation
D010799 Phycoerythrin The metal-free red phycobilin pigment in a conjugated chromoprotein of red algae. It functions as a light-absorbing substance together with chlorophylls.
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D000461 Rhodophyta Red algae whose color results from predominace of the red pigment (PHYCOERYTHRIN). However, if this pigment is destroyed, the algae can appear purple, brown, green, or yellow. Two important substances found in the cell walls of red algae are AGAR and CARRAGEENAN. Some rhodophyta are notable SEAWEED (macroalgae). Algae, Red,Red Algae
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D045342 Light-Harvesting Protein Complexes Complexes containing CHLOROPHYLL and other photosensitive molecules. They serve to capture energy in the form of PHOTONS and are generally found as components of the PHOTOSYSTEM I PROTEIN COMPLEX or the PHOTOSYSTEM II PROTEIN COMPLEX. Antenna Complexes, Light-Harvesting,Light-Harvesting Antenna Complexes,Light-Harvesting Chlorophyll Protein,Light-Harvesting Chlorophyll Protein Complexes,Antenna Complexes, Light Harvesting,Chlorophyll Protein, Light-Harvesting,Complexes, Light-Harvesting Antenna,Complexes, Light-Harvesting Protein,Light Harvesting Antenna Complexes,Light Harvesting Chlorophyll Protein,Light Harvesting Chlorophyll Protein Complexes,Light Harvesting Protein Complexes,Protein Complexes, Light-Harvesting

Related Publications

W R Chang, and T Jiang, and Z L Wan, and J P Zhang, and Z X Yang, and D C Liang
March 2012, Photosynthesis research,
W R Chang, and T Jiang, and Z L Wan, and J P Zhang, and Z X Yang, and D C Liang
January 2002, Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica,
W R Chang, and T Jiang, and Z L Wan, and J P Zhang, and Z X Yang, and D C Liang
September 2013, International journal of biological macromolecules,
W R Chang, and T Jiang, and Z L Wan, and J P Zhang, and Z X Yang, and D C Liang
March 2005, Journal of biotechnology,
W R Chang, and T Jiang, and Z L Wan, and J P Zhang, and Z X Yang, and D C Liang
January 2015, PloS one,
W R Chang, and T Jiang, and Z L Wan, and J P Zhang, and Z X Yang, and D C Liang
September 2006, Protein expression and purification,
W R Chang, and T Jiang, and Z L Wan, and J P Zhang, and Z X Yang, and D C Liang
April 2019, International journal of biological macromolecules,
W R Chang, and T Jiang, and Z L Wan, and J P Zhang, and Z X Yang, and D C Liang
October 2004, Journal of photochemistry and photobiology. B, Biology,
W R Chang, and T Jiang, and Z L Wan, and J P Zhang, and Z X Yang, and D C Liang
October 1991, FEBS letters,
W R Chang, and T Jiang, and Z L Wan, and J P Zhang, and Z X Yang, and D C Liang
June 2003, Journal of biochemistry,
Copied contents to your clipboard!