Liposomal amphotericin B (AmBisome) reduces dissemination of infection as compared with amphotericin B deoxycholate (Fungizone) in a rate model of pulmonary aspergillosis. 1996

A C Leenders, and S de Marie, and M T ten Kate, and I A Bakker-Woudenberg, and H A Verbrugh
Department of Bacteriology, University Hospital Rotterdam-Dijkzigt, The Netherlands.

The efficacy of AmBisome, a liposomal formulation of amphotericin B, was compared with that of Fungizone (amphotericin B desoxycholate), in a rat model of unilateral, pulmonary aspergillosis. Repeated administration of cyclophosphamide resulted in persistent, severe granulocytopenia. The left lung was inoculated with a conidial suspension of Aspergillus fumigatus, thus establishing an unilateral infection. Antifungal treatment was started 40 h after fungal inoculation, at which time mycelial disease was confirmed by histological examination. Both Fungizone 1 mg/kg and AmBisome 10 mg/kg resulted in increased survival in terms of delayed as well as reduced mortality. Quantitative cultures of lung tissue showed that only AmBisome 10 mg/kg resulted in reduction of the number of fungal cfus in the inoculated left lung. Compared with Fungizone, both AmBisome 1 mg/kg/day and AmBisome 10 mg/kg/day significantly prevented dissemination from the infected left lung to the right lung. In addition, both AmBisome regimens reduced hepatosplenic dissemination, and the 10 m/kg dosage fully prevented this complication. In conclusion, when compared with Fungizone, in this model AmBisome is more effective in reducing dissemination of unilateral, pulmonary aspergillosis, even when given in relatively low dosage. Such low dosages may have a place in prophylactic settings.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008172 Lung Diseases, Fungal Pulmonary diseases caused by fungal infections, usually through hematogenous spread. Fungal Lung Diseases,Pulmonary Fungal Infections,Pulmonary Fungal Diseases,Fungal Disease, Pulmonary,Fungal Diseases, Pulmonary,Fungal Infection, Pulmonary,Fungal Infections, Pulmonary,Fungal Lung Disease,Lung Disease, Fungal,Pulmonary Fungal Disease,Pulmonary Fungal Infection
D003840 Deoxycholic Acid A bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Deoxycholate,Desoxycholic Acid,Kybella,Choleic Acid,Deoxycholic Acid, 12beta-Isomer,Deoxycholic Acid, 3beta-Isomer,Deoxycholic Acid, 5alpha-Isomer,Deoxycholic Acid, Disodium Salt,Deoxycholic Acid, Magnesium (2:1) Salt,Deoxycholic Acid, Monoammonium Salt,Deoxycholic Acid, Monopotassium Salt,Deoxycholic Acid, Monosodium Salt,Deoxycholic Acid, Sodium Salt, 12beta-Isomer,Dihydroxycholanoic Acid,Lagodeoxycholic Acid,Sodium Deoxycholate,12beta-Isomer Deoxycholic Acid,3beta-Isomer Deoxycholic Acid,5alpha-Isomer Deoxycholic Acid,Deoxycholate, Sodium,Deoxycholic Acid, 12beta Isomer,Deoxycholic Acid, 3beta Isomer,Deoxycholic Acid, 5alpha Isomer
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004338 Drug Combinations Single preparations containing two or more active agents, for the purpose of their concurrent administration as a fixed dose mixture. Drug Combination,Combination, Drug,Combinations, Drug
D000380 Agranulocytosis A decrease in the number of GRANULOCYTES; (BASOPHILS; EOSINOPHILS; and NEUTROPHILS). Granulocytopenia,Agranulocytoses,Granulocytopenias
D000666 Amphotericin B Macrolide antifungal antibiotic produced by Streptomyces nodosus obtained from soil of the Orinoco river region of Venezuela. Amphocil,Amphotericin,Amphotericin B Cholesterol Dispersion,Amphotericin B Colloidal Dispersion,Fungizone
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000935 Antifungal Agents Substances that destroy fungi by suppressing their ability to grow or reproduce. They differ from FUNGICIDES, INDUSTRIAL because they defend against fungi present in human or animal tissues. Anti-Fungal Agents,Antifungal Agent,Fungicides, Therapeutic,Antibiotics, Antifungal,Therapeutic Fungicides,Agent, Antifungal,Anti Fungal Agents,Antifungal Antibiotics
D001228 Aspergillosis Infections with fungi of the genus ASPERGILLUS. Aspergillus Infection,Aspergilloses,Aspergillus Infections,Infection, Aspergillus,Infections, Aspergillus

Related Publications

A C Leenders, and S de Marie, and M T ten Kate, and I A Bakker-Woudenberg, and H A Verbrugh
December 1994, The Journal of antimicrobial chemotherapy,
A C Leenders, and S de Marie, and M T ten Kate, and I A Bakker-Woudenberg, and H A Verbrugh
May 1994, The Journal of infection,
A C Leenders, and S de Marie, and M T ten Kate, and I A Bakker-Woudenberg, and H A Verbrugh
November 1993, Drug and therapeutics bulletin,
A C Leenders, and S de Marie, and M T ten Kate, and I A Bakker-Woudenberg, and H A Verbrugh
March 2002, Antimicrobial agents and chemotherapy,
A C Leenders, and S de Marie, and M T ten Kate, and I A Bakker-Woudenberg, and H A Verbrugh
August 2010, Antimicrobial agents and chemotherapy,
A C Leenders, and S de Marie, and M T ten Kate, and I A Bakker-Woudenberg, and H A Verbrugh
June 2000, The Journal of pharmacy and pharmacology,
A C Leenders, and S de Marie, and M T ten Kate, and I A Bakker-Woudenberg, and H A Verbrugh
November 2019, Mycoses,
A C Leenders, and S de Marie, and M T ten Kate, and I A Bakker-Woudenberg, and H A Verbrugh
January 1996, La Revue de medecine interne,
A C Leenders, and S de Marie, and M T ten Kate, and I A Bakker-Woudenberg, and H A Verbrugh
January 1997, La Revue de medecine interne,
A C Leenders, and S de Marie, and M T ten Kate, and I A Bakker-Woudenberg, and H A Verbrugh
April 1995, The Journal of antimicrobial chemotherapy,
Copied contents to your clipboard!