Lytic systems in lactic acid bacteria and their bacteriophages. 1996

M J Gasson
Department of Genetics and Microbiology, Institute of Food Research, Norwich Research Park, Colney, UK.

Lytic systems of lactic acid bacteria and their bacteriophages are reviewed with an emphasis on molecular characterization. Details of enzyme biochemistry and the cloning and analysis of lytic genes are presented, with coverage of lactococcal prolate headed bacteriophages, lactococcal isometric bacteriophages, Lactobacillus bacteriophages and lactococcal autolysins. Some comments on the importance of autolysis in cheese ripening are included and the biotechnological exploitation of cloned and characterized lytic genes is presented.

UI MeSH Term Description Entries
D007778 Lactobacillus A genus of gram-positive, microaerophilic, rod-shaped bacteria occurring widely in nature. Its species are also part of the many normal flora of the mouth, intestinal tract, and vagina of many mammals, including humans. Lactobacillus species are homofermentative and ferment a broad spectrum of carbohydrates often host-adapted but do not ferment PENTOSES. Most members were previously assigned to the Lactobacillus delbrueckii group. Pathogenicity from this genus is rare.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D006867 Hydrolases Any member of the class of enzymes that catalyze the cleavage of the substrate and the addition of water to the resulting molecules, e.g., ESTERASES, glycosidases (GLYCOSIDE HYDROLASES), lipases, NUCLEOTIDASES, peptidases (PEPTIDE HYDROLASES), and phosphatases (PHOSPHORIC MONOESTER HYDROLASES). EC 3. Hydrolase
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001433 Bacteriolysis Rupture of bacterial cells due to mechanical force, chemical action, or the lytic growth of BACTERIOPHAGES. Bacteriolyses
D001435 Bacteriophages Viruses whose hosts are bacterial cells. Phages,Bacteriophage,Phage
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

M J Gasson
September 1990, FEMS microbiology reviews,
M J Gasson
April 1995, Applied microbiology and biotechnology,
M J Gasson
September 1983, Antonie van Leeuwenhoek,
M J Gasson
July 2006, Applied microbiology and biotechnology,
M J Gasson
January 1999, Antonie van Leeuwenhoek,
Copied contents to your clipboard!