Functional evidence of inhibitory reno-renal reflexes in spontaneously hypertensive rats. 1996

G Protasoni, and R Golin, and S Genovesi, and A Zanchetti, and A Stella
Istituto di Clinica Medica Generale e Terapia Medica, Università di Milano, Ospedale Maggiore, Italy.

The experiments were performed to study the role of the renal nerves and the reno-renal reflexes in the control of water and sodium excretion in spontaneously hypertensive rats (SHR) compared to their normotensive controls, Wistar Kyoto (WKY) rats. Unilateral renal denervation in anaesthetized animals produced a slight, progressive decrease in arterial pressure in both WKY and SHR rats. The glomerular filtration rate temporarily increased in the kidney that underwent the denervation in the SHR group only. After unilateral renal denervation a sharp increase in water and sodium excretion from the ipsilateral kidney was observed in both WKY and SHR. One hour after the denervation, the percent changes in water and sodium excretion were smaller in WKY (+32 +/- 19% and +24 +/- 17%) than in SHR rats (+84 +/- 15% and +93 +/- 20%). In the kidney contralateral to the denervation a reduction in water and sodium excretion was observed and this reduction was prompter in SHR than in WKY rats. One hour after the denervation, the percent changes in water and sodium excretion were similar in WKY (-21 +/- 8% and -18 +/- 7%) and SHR (-19 +/- 6% and -19 +/- 7%). In control groups, sham denervation did not cause significant changes in glomerular filtration rate, and urinary water and sodium excretion. Arterial pressure slightly and progressively decreased in both control groups. Electrical stimulation of the efferent renal nerves performed in WKY and SHR produced similar decreases in renal blood flow, glomerular filtration rate, and water and sodium excretion in the two groups for the same frequencies of stimulation. As this finding indicates that renal targets in hypertensive rats are normally responsive to the neural drive, our data demonstrate that renal responses to unilateral renal denervation in hypertensive rats are equal to the responses observed in normotensive rats. Our results indicate that tonically active inhibitory renorenal reflexes normally operate in spontaneously hypertensive rats.

UI MeSH Term Description Entries
D006978 Hypertension, Renovascular Hypertension due to RENAL ARTERY OBSTRUCTION or compression. Hypertension, Goldblatt,Goldblatt Syndrome,Goldblatt Hypertension,Renovascular Hypertension,Syndrome, Goldblatt
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D011918 Rats, Inbred SHR A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke. Rats, Spontaneously Hypertensive,Rats, SHR,Inbred SHR Rat,Inbred SHR Rats,Rat, Inbred SHR,Rat, SHR,Rat, Spontaneously Hypertensive,SHR Rat,SHR Rat, Inbred,SHR Rats,SHR Rats, Inbred,Spontaneously Hypertensive Rat,Spontaneously Hypertensive Rats
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D013562 Sympathectomy The removal or interruption of some part of the sympathetic nervous system for therapeutic or research purposes. Denervation, Sympathetic,Sympathetic Denervation,Denervations, Sympathetic,Sympathectomies,Sympathetic Denervations
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide

Related Publications

G Protasoni, and R Golin, and S Genovesi, and A Zanchetti, and A Stella
June 1988, Journal of the autonomic nervous system,
G Protasoni, and R Golin, and S Genovesi, and A Zanchetti, and A Stella
January 1987, Hypertension (Dallas, Tex. : 1979),
G Protasoni, and R Golin, and S Genovesi, and A Zanchetti, and A Stella
July 1997, Journal of the autonomic nervous system,
G Protasoni, and R Golin, and S Genovesi, and A Zanchetti, and A Stella
October 1979, The American journal of cardiology,
G Protasoni, and R Golin, and S Genovesi, and A Zanchetti, and A Stella
December 1980, Clinical science (London, England : 1979),
G Protasoni, and R Golin, and S Genovesi, and A Zanchetti, and A Stella
January 1981, General pharmacology,
G Protasoni, and R Golin, and S Genovesi, and A Zanchetti, and A Stella
December 1995, Clinical and experimental pharmacology & physiology. Supplement,
G Protasoni, and R Golin, and S Genovesi, and A Zanchetti, and A Stella
October 1975, Laboratory animal science,
G Protasoni, and R Golin, and S Genovesi, and A Zanchetti, and A Stella
July 1994, Hypertension (Dallas, Tex. : 1979),
G Protasoni, and R Golin, and S Genovesi, and A Zanchetti, and A Stella
June 2012, American journal of physiology. Renal physiology,
Copied contents to your clipboard!