Salt loading abolishes osmotically stimulated vasopressin release within the supraoptic nucleus. 1996

M Ludwig, and K Williams, and M F Callahan, and M Morris
Department of Physiology and Pharmacology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC 27157-1083, USA. mludwig@srv2.med.ed.ac.uk

Central and systemic osmotic stimulation increase vasopressin (VP) release within the supraoptic nucleus (SON) and into the general circulation. We examined whether changes in water/electrolyte balance affect the neurosecretory responses to these stimuli. Urethane-anesthetized control, salt-loaded (2% NaCl for 2 days) or water-deprived (for 2 days) male rats were implanted with an arterial catheter and bilateral microdialysis probes into the SON. Plasma and SON VP levels were measured before and after acute osmotic stimuli were administered intraperitoneally (i.p.) and then directly into the SON. Water deprivation resulted in elevated basal intranuclear and plasma VP levels. Intraperitoneal hypertonic saline (HS) and direct osmotic stimulation of the SON increased VP release into the SON in both the control and water-deprived groups. Salt loading abolished the intranuclear VP response to both stimuli. Osmotically induced release of VP into plasma was not different between the three groups. These data demonstrate that salt loading, but not water deprivation, alters the central neurosecretory VP response to acute osmotic stimulation.

UI MeSH Term Description Entries
D008297 Male Males
D009997 Osmotic Pressure The pressure required to prevent the passage of solvent through a semipermeable membrane that separates a pure solvent from a solution of the solvent and solute or that separates different concentrations of a solution. It is proportional to the osmolality of the solution. Osmotic Shock,Hypertonic Shock,Hypertonic Stress,Hypotonic Shock,Hypotonic Stress,Osmotic Stress,Hypertonic Shocks,Hypertonic Stresses,Hypotonic Shocks,Hypotonic Stresses,Osmotic Pressures,Osmotic Shocks,Osmotic Stresses,Pressure, Osmotic,Pressures, Osmotic,Shock, Hypertonic,Shock, Hypotonic,Shock, Osmotic,Shocks, Hypertonic,Shocks, Hypotonic,Shocks, Osmotic,Stress, Hypertonic,Stress, Hypotonic,Stress, Osmotic,Stresses, Hypertonic,Stresses, Hypotonic,Stresses, Osmotic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012492 Salts Substances produced from the reaction between acids and bases; compounds consisting of a metal (positive) and nonmetal (negative) radical. (Grant & Hackh's Chemical Dictionary, 5th ed) Salt
D013495 Supraoptic Nucleus Hypothalamic nucleus overlying the beginning of the OPTIC TRACT. Accessory Supraoptic Group,Nucleus Supraopticus,Supraoptic Nucleus of Hypothalamus,Accessory Supraoptic Groups,Group, Accessory Supraoptic,Groups, Accessory Supraoptic,Hypothalamus Supraoptic Nucleus,Nucleus, Supraoptic,Supraoptic Group, Accessory,Supraoptic Groups, Accessory,Supraopticus, Nucleus
D014667 Vasopressins Antidiuretic hormones released by the NEUROHYPOPHYSIS of all vertebrates (structure varies with species) to regulate water balance and OSMOLARITY. In general, vasopressin is a nonapeptide consisting of a six-amino-acid ring with a cysteine 1 to cysteine 6 disulfide bridge or an octapeptide containing a CYSTINE. All mammals have arginine vasopressin except the pig with a lysine at position 8. Vasopressin, a vasoconstrictor, acts on the KIDNEY COLLECTING DUCTS to increase water reabsorption, increase blood volume and blood pressure. Antidiuretic Hormone,Antidiuretic Hormones,beta-Hypophamine,Pitressin,Vasopressin,Vasopressin (USP),Hormone, Antidiuretic,beta Hypophamine
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017551 Microdialysis A technique for measuring extracellular concentrations of substances in tissues, usually in vivo, by means of a small probe equipped with a semipermeable membrane. Substances may also be introduced into the extracellular space through the membrane.
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M Ludwig, and K Williams, and M F Callahan, and M Morris
May 1996, The American journal of physiology,
M Ludwig, and K Williams, and M F Callahan, and M Morris
June 2000, Journal of neuroendocrinology,
M Ludwig, and K Williams, and M F Callahan, and M Morris
August 1994, Journal of neuroendocrinology,
M Ludwig, and K Williams, and M F Callahan, and M Morris
June 1994, Neuroreport,
M Ludwig, and K Williams, and M F Callahan, and M Morris
July 2003, Journal of neuroendocrinology,
M Ludwig, and K Williams, and M F Callahan, and M Morris
May 1983, Neuroendocrinology,
M Ludwig, and K Williams, and M F Callahan, and M Morris
February 1982, Neuroendocrinology,
M Ludwig, and K Williams, and M F Callahan, and M Morris
October 1992, Neuroscience,
M Ludwig, and K Williams, and M F Callahan, and M Morris
April 1990, The American journal of physiology,
M Ludwig, and K Williams, and M F Callahan, and M Morris
November 2001, Neuroreport,
Copied contents to your clipboard!