Potentiation by 2,2'-pyridylisatogen tosylate of ATP-responses at a recombinant P2Y1 purinoceptor. 1996

B F King, and C Dacquet, and A U Ziganshin, and D F Weetman, and G Burnstock, and P M Vanhoutte, and M Spedding
Department of Anatomy and Developmental Biology, University College London.

1. 2,2'-Pyridylisatogen tosylate (PIT) has been reported to be an irreversible antagonist of responses to adenosine 5'-triphosphate (ATP) at metabotropic purinoceptors (of the P2Y family) in some smooth muscles. When a recombinant P2Y1 purinoceptor (derived from chick brain) is expressed in Xenopus oocytes, ATP and 2-methylthioATP (2-MeSATP) evoke calcium-activated chloride currents (ICl,Ca) in a concentration-dependent manner. The effects of PIT on these agonist responses were examined at this cloned P2Y purinoceptor. 2. PIT (0.1-100 microM) failed to stimulate P2Y1 purinoceptors directly but, over a narrow concentration range (0.1-3 microM), caused a time-dependent potentiation (2-5 fold) of responses to ATP. The potentiation of ATP-responses by PIT was not caused by inhibition of oocyte ecto-ATPase. At high concentrations (3-100 microM), PIT irreversibly inhibited responses to ATP with a IC50 value of 13 +/- 9 microM (pKB = 4.88 +/- 0.22; n = 3). PIT failed to potentiate inward currents evoked by 2-MeSATP and only inhibited the responses to this agonist in an irreversible manner. 3. Known P2 purinoceptor antagonists were tested for their ability to potentiate ATP-responses at the chick P2Y1 purinoceptor. Suramin (IC50 = 230 +/- 80 nM; n = 5) and Reactive blue-2 (IC50 = 580 +/- 130 nM; n = 6) reversibly inhibited but did not potentiate ATP-responses. Coomassie brilliant blue-G (0.1-3 microM) potentiated ATP-responses in three experiments, while higher concentrations (3-100 microM) irreversibly inhibited ATP-responses. The results indicated that potentiation and receptor antagonism were dissociable and not a feature common to all known P2 purinoceptor antagonists. 4. In radioligand binding assays, PIT showed a low affinity (pKi < 5) for a range of membrane receptors, including: alpha 1, alpha 2-adrenoceptors, 5-HT1A, 5-HT1B, 5-HT2, 5-HT3, D1, D2, muscarinic, central benzodiazepine, H1, mu-opioid, dihydropyridine and batrachotoxin receptors. PIT showed some affinity (pKi = 5.3) for an adenosine (A1) receptor. 5. In guinea-pig isolated taenia caeci, PIT (12.5-50 microM) irreversibly antagonized relaxations to ATP (3-1000 microM); PIT also directly relaxed the smooth muscle and histamine was used to restore tone. Relaxations to nicotine (10-100 microM), evoked by stimulating intrinsic NANC nerves of taenia caeci preparations in the presence of hyoscine (0.3 microM) and guanethidine (17 microM), were not affected by PIT (50 microM, for 25-60 min). 6. These experiments indicate that PIT causes an irreversible antagonism of ATP receptors but, for recombinant chick P2Y1 purinoceptors, this effect is preceded by potentiation of ATP agonism. The initial potentiation by PIT (and by Coomassie brilliant blue-G) of ATP-responses raises the possibility of designing a new class of modulatory drugs to enhance purinergic transmission at metabotropic purinoceptors.

UI MeSH Term Description Entries
D007510 Isatin An indole-dione that is obtained by oxidation of indigo blue. It is a MONOAMINE OXIDASE INHIBITOR and high levels have been found in urine of PARKINSONISM patients. 2,3-Dioxoindoline,2,3 Dioxoindoline
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014981 Xenopus An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.

Related Publications

B F King, and C Dacquet, and A U Ziganshin, and D F Weetman, and G Burnstock, and P M Vanhoutte, and M Spedding
July 2004, Biochemical pharmacology,
B F King, and C Dacquet, and A U Ziganshin, and D F Weetman, and G Burnstock, and P M Vanhoutte, and M Spedding
February 1997, British journal of pharmacology,
B F King, and C Dacquet, and A U Ziganshin, and D F Weetman, and G Burnstock, and P M Vanhoutte, and M Spedding
January 1997, British journal of pharmacology,
B F King, and C Dacquet, and A U Ziganshin, and D F Weetman, and G Burnstock, and P M Vanhoutte, and M Spedding
March 1979, The Journal of pharmacy and pharmacology,
B F King, and C Dacquet, and A U Ziganshin, and D F Weetman, and G Burnstock, and P M Vanhoutte, and M Spedding
August 1985, Biochemical pharmacology,
B F King, and C Dacquet, and A U Ziganshin, and D F Weetman, and G Burnstock, and P M Vanhoutte, and M Spedding
March 1974, British journal of pharmacology,
B F King, and C Dacquet, and A U Ziganshin, and D F Weetman, and G Burnstock, and P M Vanhoutte, and M Spedding
September 1977, The Journal of pharmacy and pharmacology,
B F King, and C Dacquet, and A U Ziganshin, and D F Weetman, and G Burnstock, and P M Vanhoutte, and M Spedding
June 1978, British journal of pharmacology,
B F King, and C Dacquet, and A U Ziganshin, and D F Weetman, and G Burnstock, and P M Vanhoutte, and M Spedding
May 2002, European journal of pharmacology,
B F King, and C Dacquet, and A U Ziganshin, and D F Weetman, and G Burnstock, and P M Vanhoutte, and M Spedding
May 1978, The Journal of pharmacy and pharmacology,
Copied contents to your clipboard!