Pharmacology of pertussis toxin B-oligomer. 1996

W S Wong, and P M Rosoff
Department of Pharmacology, Faculty of Medicine, National University of Singapore, Republic of Singapore.

Pertussis toxin (PTX) is a heterohexameric protein, which is divided into subunits A and B. The A-subunit (protomer) possesses adenine diphosphate (ADP) ribosyltransferase activity, and the B-oligomer confers cell surface binding specificity on the toxin. By virtue of the ADP-ribosylation activity in the A-subunit, PTX has become a very useful pharmacological tool for the identification of inhibitory guanine nucleotide binding (Gi) proteins in the plasma membrane. However, the pharmacological properties of the PTX B-oligomer are largely unknown. In the course of identifying its binding site(s), PTX B-oligomer was recently found to elicit direct cellular responses in a variety of cell types. Several cell surface receptors with oligosaccharide side chains have been shown to be specifically bound by PTX B-oligomer. Moreover, occupation of these putative receptors by the B-oligomer alone can trigger phospholipase C and tyrosine kinase dependent signal transduction events. The impact of these B-oligomer-mediated rapid signaling responses on the subsequent ADP-ribosylation of Gi protein by the A-subunit remains to be determined. These recent findings caution investigators not to attribute inhibitory effects of PTX solely to ADP-ribosylation of Gi protein without first examining the cellular responses using PTX B-oligomer.

UI MeSH Term Description Entries
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014917 Whooping Cough A respiratory infection caused by BORDETELLA PERTUSSIS and characterized by paroxysmal coughing ending in a prolonged crowing intake of breath. Pertussis,Bordetella pertussis Infection, Respiratory,Cough, Whooping,Pertusses
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D037342 Pertussis Toxin One of the virulence factors produced by BORDETELLA PERTUSSIS. It is a multimeric protein composed of five subunits S1 - S5. S1 contains mono ADPribose transferase activity. IAP Pertussis Toxin,Islet-Activating Protein,Pertussigen,Histamine-Sensitizing Factor,Islets-Activating Protein,Lymphocytosis-Promoting Factor,Histamine Sensitizing Factor,Islet Activating Protein,Islets Activating Protein,Lymphocytosis Promoting Factor,Pertussis Toxin, IAP,Toxin, IAP Pertussis,Toxin, Pertussis

Related Publications

W S Wong, and P M Rosoff
December 1991, Infection and immunity,
W S Wong, and P M Rosoff
May 1987, Infection and immunity,
W S Wong, and P M Rosoff
November 1994, Clinical and diagnostic laboratory immunology,
W S Wong, and P M Rosoff
June 1989, Infection and immunity,
W S Wong, and P M Rosoff
June 1993, Infection and immunity,
W S Wong, and P M Rosoff
April 2005, International immunology,
W S Wong, and P M Rosoff
September 2006, Analytical biochemistry,
Copied contents to your clipboard!