Evidence for 5-HT1-like receptor-mediated vasoconstriction in human pulmonary artery. 1996

M R MacLean, and R A Clayton, and A G Templeton, and I Morecroft
Division of Neuroscience and Biomedical Systems, University of Glasgow.

1. The 5-hydroxytryptamine (5-HT) receptors mediating contraction of human isolated pulmonary artery rings were investigated. Responses to the agonists 5-carboximidotryptamine (5-CT, non-selective 5-HT1 agonist), sumatriptan (5-HT1D-like receptor agonist), 5-HT and 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT, 5-HT1A receptor agonist) were studied. Responses to 5-HT and sumatriptan in the presence of the antagonists, methiothepin (non-selective 5-HT1+2-receptor antagonist), ketanserin (5-HT2A receptor antagonist) and the novel antagonist, GR55562 (5-HT1D receptor antagonist) were also studied. 2. All agonists contracted human pulmonary artery ring preparations in the following order of potency 5-CT > 5-HT = sumatriptan > 8-OH-DPAT. Maximum responses to 5-HT, 5-CT and sumatriptan were not significantly different. 3. Methiothepin 1 nM and 10 nM, but not 0.1 nM reduced the maximum contractile responses to 5-HT but did not alter tissue sensitivity to 5-HT. Methiothepin 0.1 nM, 1 nM and 10 nM had a similar effect on responses to sumatriptan. 4. The 5-HT2A receptor antagonist ketanserin (10 nM, 100 nM and 1 microM) also reduced the maximum contractile response to both 5-HT and sumatriptan without affecting tissue sensitivity to these agonists. 5. The novel 5-HT1D receptor antagonist, GR55562, inhibited responses to 5-HT and sumatriptan in a true competitive fashion. 6. The results suggest that the human pulmonary artery has a functional population of 5-HT1D-like receptors which are involved in the contractile response to 5-HT.

UI MeSH Term Description Entries
D007650 Ketanserin A selective serotonin receptor antagonist with weak adrenergic receptor blocking properties. The drug is effective in lowering blood pressure in essential hypertension. It also inhibits platelet aggregation. It is well tolerated and is particularly effective in older patients. 3-(2-(4-(4-Fluorobenzoyl)piperidinol)ethyl)-2,4(1H,3H)-quinazolinedione,R-41,468,R-41468,R 41,468,R 41468,R41,468,R41468
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008719 Methiothepin A serotonin receptor antagonist in the CENTRAL NERVOUS SYSTEM used as an antipsychotic. Metitepine,Methiothepin Maleate,Methiothepine,Maleate, Methiothepin
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001549 Benzamides BENZOIC ACID amides.
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D012702 Serotonin Antagonists Drugs that bind to but do not activate serotonin receptors, thereby blocking the actions of serotonin or SEROTONIN RECEPTOR AGONISTS. 5-HT Antagonist,5-HT Antagonists,5-Hydroxytryptamine Antagonist,5-Hydroxytryptamine Antagonists,Antiserotonergic Agent,Antiserotonergic Agents,Serotonin Antagonist,Serotonin Blockader,Serotonin Blockaders,Serotonin Receptor Antagonist,Serotonin Receptor Blocker,Antagonists, 5-HT,Antagonists, 5-Hydroxytryptamine,Antagonists, Serotonin,Serotonin Receptor Antagonists,Serotonin Receptor Blockers,5 HT Antagonist,5 HT Antagonists,5 Hydroxytryptamine Antagonist,5 Hydroxytryptamine Antagonists,Agent, Antiserotonergic,Agents, Antiserotonergic,Antagonist, 5-HT,Antagonist, 5-Hydroxytryptamine,Antagonist, Serotonin,Antagonist, Serotonin Receptor,Antagonists, 5 HT,Antagonists, 5 Hydroxytryptamine,Antagonists, Serotonin Receptor,Blockader, Serotonin,Blockaders, Serotonin,Blocker, Serotonin Receptor,Blockers, Serotonin Receptor,Receptor Antagonist, Serotonin,Receptor Antagonists, Serotonin,Receptor Blocker, Serotonin,Receptor Blockers, Serotonin

Related Publications

M R MacLean, and R A Clayton, and A G Templeton, and I Morecroft
July 1996, Journal of cardiovascular pharmacology,
M R MacLean, and R A Clayton, and A G Templeton, and I Morecroft
May 1997, Annals of the New York Academy of Sciences,
M R MacLean, and R A Clayton, and A G Templeton, and I Morecroft
September 1992, British journal of pharmacology,
M R MacLean, and R A Clayton, and A G Templeton, and I Morecroft
July 1992, Neuropharmacology,
M R MacLean, and R A Clayton, and A G Templeton, and I Morecroft
May 1992, Naunyn-Schmiedeberg's archives of pharmacology,
M R MacLean, and R A Clayton, and A G Templeton, and I Morecroft
February 1989, British journal of pharmacology,
M R MacLean, and R A Clayton, and A G Templeton, and I Morecroft
June 1988, British journal of pharmacology,
M R MacLean, and R A Clayton, and A G Templeton, and I Morecroft
January 1998, Clinical and experimental pharmacology & physiology,
M R MacLean, and R A Clayton, and A G Templeton, and I Morecroft
October 1992, British journal of pharmacology,
M R MacLean, and R A Clayton, and A G Templeton, and I Morecroft
August 1992, European journal of pharmacology,
Copied contents to your clipboard!