Superinduction of IL-6 synthesis in human peritoneal mesothelial cells is related to the induction and stabilization of IL-6 mRNA. 1996

J Witowski, and A Jörres, and G A Coles, and J D Williams, and N Topley
Institute of Nephrology, University of Wales College of Medicine, Cardiff, United Kingdom.

The initiation of peritonitis is accompanied by a massive increase in intraperitoneal levels of IL-6. The source of this cytokine and the mechanism by which its levels are increased so dramatically are unknown. We examined the mechanism of IL-6 secretion by HPMC exposed to the milicu present in the peritoneal cavity during the initiation of inflammation. Exposure of HPMC to spent peritoneal dialysis effluent (PDE) or IL-1 beta resulted in a time- and dose-dependent increase in IL-6 secretion. After 24 hours the IL-6 release (pg/microgram cell protein) was increased from 5.0 +/- 0.8 in control cells to 16.0 +/- 2.4 and to 83.8 +/- 17.4 in HPMC treated with PDE and IL-1 beta (1000 pg/ml), respectively (N = 5, P < 0.05). If, however, PDE and IL-1 beta were combined, then the secretion of IL-6 was synergistically increased to 747.7 +/- 349.9 (P < 0.05 vs. expected additive value). The same effect was evident when PDE was combined with TNF alpha or mixed with peritoneal macrophage conditioned medium. These changes were not a reflection of HPMC proliferation as estimated by 3H-thymidine incorporation. The "superinduction" of IL-6 release was associated both with the induction and stabilization of IL-6 mRNA. Competitive PCR demonstrated that the amount of IL-6 mRNA (fM/microgram total RNA) was increased from 0.35 +/- 0.13 in control cells to 11.66 +/- 3.89 and to 10.83 +/- 5.17 in HPMC treated with PDE and IL-1 beta (100 pg/ml), respectively (N = 5, P < 0.05). The combination of PDE + IL-1 beta synergistically increased IL-6 mRNA levels to 56.33 +/- 8.79 (P < 0.05 vs. additive value). RNA stability experiments using actinomycin D revealed that the half life of IL-6 mRNA (hours) was increased from 2.8 hours in control cells to 6.7 and 9.4 in HPMC exposed to PDE and IL-1 beta, respectively. The combination of PDE together with IL-1 beta resulted in a prolonged stabilization of IL-6 mRNA with levels remaining constant over the 12 hours of the experiment. These data demonstrate that HPMC IL-6 synthesis can be synergistically amplified in the presence of peritoneal dialysis effluent and PMO-derived cytokines. The results suggest that the peritoneal mesothelium may be responsible for the dramatic rise in IL-6 levels seen during the initial stages of CAPD peritonitis.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010529 Peritoneal Cavity The space enclosed by the peritoneum. It is divided into two portions, the greater sac and the lesser sac or omental bursa, which lies behind the STOMACH. The two sacs are connected by the foramen of Winslow, or epiploic foramen. Greater Sac,Lesser Sac,Omental Bursa,Bursa, Omental,Cavity, Peritoneal,Sac, Greater,Sac, Lesser
D010538 Peritonitis INFLAMMATION of the PERITONEUM lining the ABDOMINAL CAVITY as the result of infectious, autoimmune, or chemical processes. Primary peritonitis is due to infection of the PERITONEAL CAVITY via hematogenous or lymphatic spread and without intra-abdominal source. Secondary peritonitis arises from the ABDOMINAL CAVITY itself through RUPTURE or ABSCESS of intra-abdominal organs. Primary Peritonitis,Secondary Peritonitis,Peritonitis, Primary,Peritonitis, Secondary
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose

Related Publications

J Witowski, and A Jörres, and G A Coles, and J D Williams, and N Topley
January 1993, Kidney international,
J Witowski, and A Jörres, and G A Coles, and J D Williams, and N Topley
August 1995, Cytokine,
J Witowski, and A Jörres, and G A Coles, and J D Williams, and N Topley
September 1994, Kidney international,
J Witowski, and A Jörres, and G A Coles, and J D Williams, and N Topley
March 2001, Toxicology,
J Witowski, and A Jörres, and G A Coles, and J D Williams, and N Topley
April 2004, Journal of cellular biochemistry,
J Witowski, and A Jörres, and G A Coles, and J D Williams, and N Topley
August 2002, Clinical and experimental immunology,
J Witowski, and A Jörres, and G A Coles, and J D Williams, and N Topley
September 2007, American journal of physiology. Cell physiology,
J Witowski, and A Jörres, and G A Coles, and J D Williams, and N Topley
January 1994, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis,
J Witowski, and A Jörres, and G A Coles, and J D Williams, and N Topley
October 1994, Kidney international,
J Witowski, and A Jörres, and G A Coles, and J D Williams, and N Topley
July 2001, Cell and tissue research,
Copied contents to your clipboard!