Alpha 2-adrenergic agonists reduce glutamate release and glutamate receptor-mediated calcium changes in hippocampal slices during hypoxia. 1996

P E Bickler, and B M Hansen
Department of Anesthesia, University of California at San Francisco, 94143, USA. bickler@jemo.ucsf.edu

The mechanisms by which alpha 2-adrenergic agonists reduce ischemic brain damage are not clear. In ischemia-vulnerable hippocampal neurons we tested whether alpha 2-agonists reduce glutamate efflux and glutamate receptor-mediated increase of cytosolic free calcium. Brain slices (300 microns thick) from rat hippocampal were located with fura-2 for measurements of cytosolic free calcium with a microscope fluorometer. Change of cytosolic calcium in CA1 neurons during application of N-methyl-D-aspartate (NMDA) was measured, as were calcium changes during simulated ischemia (hypoxia, NaCN, iodoacetate) of hypoxia plus high glutamate concentration (pO2 = 25 mmHg, 3 mM glutamate). In order slices, glutamate efflux evoked by anoxia (pO2 = 25 mmHg, 100 microM NaCN) was measured. The selective alpha 2-agonist mivazerol (1 microM) decreased NMDA receptor-mediated calcium changes in hippocampal CA1 neurons by 28% (p = 0.0079). With hypoxia and 3 mM glutamate, 1 microM mivazerol reduced early peak calcium changes in CA1 neurons by 57% (p = 0.0007). An alpha 2-antagonist (rauwolscine, 1 microM) blocked this. Mivazerol did not reduce the rate of calcium change during simulated ischemia. Clonidine (0.1 microM), a partial alpha 2-agonist, decrease glutamate/hypoxia-mediated calcium changes in CA1 (p = 0.01), but 1 microM clonidine, which stimulates alpha 1-receptors, did not. Mivazerol decreased hypoxia and KCl1-evoked glutamate release by 50% and 75% (p < 0.01), respectively. In addition, 1 microM mivazerol reduced lactate dehydrogenase leakage rate from brain slices during anoxia by 61% (p = 0.018). Thus, alpha 2-receptors influence glutamate release, calcium changes, and cell damage in ischemia-vulnerable hippocampal neurons. These effects may contribute to the cerebroprotective actions of alpha 2-agonists.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003000 Clonidine An imidazoline sympatholytic agent that stimulates ALPHA-2 ADRENERGIC RECEPTORS and central IMIDAZOLINE RECEPTORS. It is commonly used in the management of HYPERTENSION. Catapres,Catapresan,Catapressan,Chlophazolin,Clofelin,Clofenil,Clonidine Dihydrochloride,Clonidine Hydrochloride,Clonidine Monohydrobromide,Clonidine Monohydrochloride,Clopheline,Dixarit,Gemiton,Hemiton,Isoglaucon,Klofelin,Klofenil,M-5041T,ST-155,Dihydrochloride, Clonidine,Hydrochloride, Clonidine,M 5041T,M5041T,Monohydrobromide, Clonidine,Monohydrochloride, Clonidine,ST 155,ST155
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000316 Adrenergic alpha-Agonists Drugs that selectively bind to and activate alpha adrenergic receptors. Adrenergic alpha-Receptor Agonists,alpha-Adrenergic Receptor Agonists,Adrenergic alpha-Agonist,Adrenergic alpha-Receptor Agonist,Receptor Agonists, Adrenergic alpha,Receptor Agonists, alpha-Adrenergic,alpha-Adrenergic Agonist,alpha-Adrenergic Agonists,alpha-Adrenergic Receptor Agonist,Adrenergic alpha Agonist,Adrenergic alpha Agonists,Adrenergic alpha Receptor Agonist,Adrenergic alpha Receptor Agonists,Agonist, Adrenergic alpha-Receptor,Agonist, alpha-Adrenergic,Agonist, alpha-Adrenergic Receptor,Agonists, Adrenergic alpha-Receptor,Agonists, alpha-Adrenergic,Agonists, alpha-Adrenergic Receptor,Receptor Agonist, alpha-Adrenergic,Receptor Agonists, alpha Adrenergic,alpha Adrenergic Agonist,alpha Adrenergic Agonists,alpha Adrenergic Receptor Agonist,alpha Adrenergic Receptor Agonists,alpha-Agonist, Adrenergic,alpha-Agonists, Adrenergic,alpha-Receptor Agonist, Adrenergic,alpha-Receptor Agonists, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

P E Bickler, and B M Hansen
June 1986, Biulleten' eksperimental'noi biologii i meditsiny,
P E Bickler, and B M Hansen
January 1994, Proceedings of the Western Pharmacology Society,
P E Bickler, and B M Hansen
January 2002, Proceedings of the Western Pharmacology Society,
P E Bickler, and B M Hansen
June 1983, European journal of pharmacology,
Copied contents to your clipboard!