Kindling-induced epileptiform potentials in piriform cortex slices originate in the underlying endopiriform nucleus. 1996

W H Hoffman, and L B Haberly
Department of Anatomy, University of Wisconsin, Madison 53706, USA.

1. Previous studies in vivo and in vitro have shown that kindling from several locations in the limbic system induces the onset of epileptiform activity in the piriform (olfactory) cortex in the rat. In the present study we tested the hypothesis that kindled epileptiform events in piriform cortex are initiated in the underlying endopiriform nucleus. The experiments were performed in slices taken from rats that were previously kindled by conventional means. 2. Both stimulus-evoked and spontaneous interictal-like epileptiform events were observed in most slices from the anterior piriform cortex, but in few slices from the posterior piriform cortex. These events resembled those described in unanesthetized and urethan-anesthetized rats in previous studies. 3. Findings in support of the hypothesis were as follows. Epileptiform events in the endopiriform nucleus preceded those in the piriform cortex. Epileptiform events could occur in endopiriform nucleus alone, but were only observed in the piriform cortex following occurrence in the endopiriform nucleus. A buildup in population activity preceded the onset of all-or-none epileptiform events in the endopiriform nucleus. Epileptiform events could be triggered by local application of glutamate in the endopiriform nucleus and adjacent claustrum, but not from the piriform cortex. Finally, local application of Co2+ in the endopiriform nucleus, but not in the piriform cortex or elsewhere in the slices, blocked the occurrence of epileptiform events. 4. Additional experiments were performed to further characterize the generation process. 6,7-Dinitroquinoxaline-2,3-dione (DNQX) blocked epileptiform events and the preceding accelerating buildup in multiunit activity at a concentration below that required to block the monosynaptic excitatory postsynaptic potential (EPSP). This suggests that EPSPs mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors underlie epileptiform events in slices of piriform cortex, and that multisynaptic interactions within the endopiriform nucleus are required for generation of these epileptiform EPSPs. By contrast, block of N-methyl-D-aspartate (NMDA) receptors decreased the amplitude of epileptiform EPSPs but did not block their occurrence, indicating that NMDA receptors contribute to generation but are not required. When membrane potential was depolarized to increase driving force, fast inhibitory postsynaptic potentials were found to consistently accompany the buildup process and epileptiform EPSPs. This indicates that if initiation of epileptiform activity in the endopiriform nucleus results from a compromise in feedback inhibition, this compromise is partial rather than complete. 5. Epileptiform EPSPs in slices of piriform cortex from kindled rats displayed similarities in properties, locus of origin, and mechanism of generation to those previously studied in slices from normal rats in which epileptiform activity was induced by a brief period of bursting activity. These similarities suggest that study of bursting-induced epileptiform EPSPs may provide insight into certain aspects of kindling-induced epileptogenesis.

UI MeSH Term Description Entries
D007696 Kindling, Neurologic The repeated weak excitation of brain structures, that progressively increases sensitivity to the same stimulation. Over time, this can lower the threshold required to trigger seizures. Kindlings, Neurologic,Neurologic Kindling,Neurologic Kindlings
D008297 Male Males
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009833 Olfactory Pathways Set of nerve fibers conducting impulses from olfactory receptors to the cerebral cortex. It includes the OLFACTORY NERVE; OLFACTORY BULB; OLFACTORY TRACT; OLFACTORY TUBERCLE; ANTERIOR PERFORATED SUBSTANCE; and OLFACTORY CORTEX. Olfactory Pathway,Pathway, Olfactory,Pathways, Olfactory
D011810 Quinoxalines Quinoxaline
D003035 Cobalt A trace element that is a component of vitamin B12. It has the atomic symbol Co, atomic number 27, and atomic weight 58.93. It is used in nuclear weapons, alloys, and pigments. Deficiency in animals leads to anemia; its excess in humans can lead to erythrocytosis. Cobalt-59,Cobalt 59
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004833 Epilepsy, Temporal Lobe A localization-related (focal) form of epilepsy characterized by recurrent seizures that arise from foci within the TEMPORAL LOBE, most commonly from its mesial aspect. A wide variety of psychic phenomena may be associated, including illusions, hallucinations, dyscognitive states, and affective experiences. The majority of complex partial seizures (see EPILEPSY, COMPLEX PARTIAL) originate from the temporal lobes. Temporal lobe seizures may be classified by etiology as cryptogenic, familial, or symptomatic. (From Adams et al., Principles of Neurology, 6th ed, p321). Epilepsy, Benign Psychomotor, Childhood,Benign Psychomotor Epilepsy, Childhood,Childhood Benign Psychomotor Epilepsy,Epilepsy, Lateral Temporal,Epilepsy, Uncinate,Epilepsies, Lateral Temporal,Epilepsies, Temporal Lobe,Epilepsies, Uncinate,Lateral Temporal Epilepsies,Lateral Temporal Epilepsy,Temporal Lobe Epilepsies,Temporal Lobe Epilepsy,Uncinate Epilepsies,Uncinate Epilepsy
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000679 Amygdala Almond-shaped group of basal nuclei anterior to the INFERIOR HORN OF THE LATERAL VENTRICLE of the TEMPORAL LOBE. The amygdala is part of the limbic system. Amygdaloid Body,Amygdaloid Nuclear Complex,Amygdaloid Nucleus,Archistriatum,Corpus Amygdaloideum,Intercalated Amygdaloid Nuclei,Massa Intercalata,Nucleus Amygdalae,Amygdalae, Nucleus,Amygdaloid Bodies,Amygdaloid Nuclear Complices,Amygdaloid Nuclei, Intercalated,Amygdaloid Nucleus, Intercalated,Amygdaloideum, Corpus,Amygdaloideums, Corpus,Archistriatums,Complex, Amygdaloid Nuclear,Complices, Amygdaloid Nuclear,Corpus Amygdaloideums,Intercalata, Massa,Intercalatas, Massa,Intercalated Amygdaloid Nucleus,Massa Intercalatas,Nuclear Complex, Amygdaloid,Nuclear Complices, Amygdaloid,Nuclei, Intercalated Amygdaloid,Nucleus, Amygdaloid,Nucleus, Intercalated Amygdaloid

Related Publications

W H Hoffman, and L B Haberly
August 1991, Brain research,
W H Hoffman, and L B Haberly
June 2000, Annals of the New York Academy of Sciences,
W H Hoffman, and L B Haberly
November 1998, Journal of neurophysiology,
W H Hoffman, and L B Haberly
December 1996, Progress in neurobiology,
W H Hoffman, and L B Haberly
February 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!