Characterization of dopamine receptors mediating inhibition of excitatory synaptic transmission in the rat hippocampal slice. 1996

K S Hsu
Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan City, Taiwan.

1. The effect of dopamine (DA) on the excitatory synaptic transmission was studied in the CA1 neurons of rat hippocampal slices using intracellular recording technique. 2. Depolarizing excitatory postsynaptic potentials (EPSPs) were evoked by stimulation of the Schaffer collateral-commissural pathway. Superfusion of DA (0.03-1 microM) reversibly decreased the EPSP in a concentration-dependent manner and with an estimated IC50 of 0.3 microM. The sensitivity of postsynaptic neurons to the glutamate-receptor agonists, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid or N-methyl-D-aspartate was unchanged by DA (0.3 microM) pretreatment. In addition, DA (0.3 microM) increased the magnitude of paired-pulse facilitation, a phenomenon attributed to an increase in the amount of transmitter released in response to the second stimulus. 3. The reduction of DA (0.3 microM) on the EPSP was antagonized by sulpiride (1-10 nM), a selective D2-receptor antagonist. However, D1-receptor antagonist, SKF-83566 (1-10 microM), did not significantly affect the reduction of DA (0.3 microM) on the EPSP. 4. (+/-)-2-(N-Phenylethyl-N-propyl)amino-5-hydroxytetralin (1 microM), an agonist of D2 receptor, mimicked the inhibitory effect of DA on the EPSP. However, neither the D1-receptor agonist SKF-38393 (1 microM) nor the D3-receptor agonist (PD-128,907 (1 microM) affected the EPSP. 5. Incubation of hippocampal slices with pertussis toxin (PTX, 5 micrograms/ml) for 12 h prevented the reduction of EPSP induced by DA (0.3 microM). 6. Rp-adenosine-3',5'-cyclic monophosphothioate (25 microM), a potent inhibitor of protein kinase A (PKA), alone decreased the amplitude of EPSP below baseline values and prevented the subsequent reduction by DA (0.3 microM). 7. These results indicate that DA at a low concentration (< or = 0.3 microM) reduces the excitatory response of hippocampal CA1 neurons after synaptic stimulation via the activation of presynaptic D2 receptors. The presynaptic action of DA is mediated by a PTX-sensitive Gi-proteins-coupled to PKA pathway.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

K S Hsu
June 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!