Cloning and characterization of two yeast genes encoding members of the CCCH class of zinc finger proteins: zinc finger-mediated impairment of cell growth. 1996

M J Thompson, and W S Lai, and G A Taylor, and P J Blackshear
Howard Hughes Medical Institute Laboratories, Duke University Medical Center, Durham, NC 27710, USA.

Members of the CCCH zinc finger (Zf) protein family have in common two or more repeats of a novel Zf motif consisting of Cys and His residues in the form Cx8Cx5Cx3H [where x is a variable amino acid (aa)]. We used a degenerate polymerase chain reaction (PCR) strategy to clone members of this gene family from Saccharomyces cerevisiae. The deduced aa sequences encoded by these genes, designated CTH1 and CTH2, share 46% overall identity and 59% similarity, largely due to the two highly conserved Zf domains. We found readily detectable expression of a 1.4-kb mRNA encoding Cth1p. The 1.1-kb mRNA encoding Cth2p was barely detectable under normal growth conditions; however, disruption of CTH1 resulted in at least a threefold increase in CTH2 mRNA accumulation. No change in phenotype was detected following disruption of CTH1 and CTH2, either singly or together. In contrast, overexpression of the CTH genes or one of the related mammalian genes, tris-tetraprolin (TTP), caused delayed entry of cell cultures into exponential growth, and a decrease in final cell density. Removal of the Zf domain of Cth1p by truncation or deletion completely reversed this slow growth phenotype, indicating that it was mediated through this highly conserved structural motif.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings

Related Publications

M J Thompson, and W S Lai, and G A Taylor, and P J Blackshear
January 2003, Progress in nucleic acid research and molecular biology,
M J Thompson, and W S Lai, and G A Taylor, and P J Blackshear
November 1991, Proceedings of the National Academy of Sciences of the United States of America,
M J Thompson, and W S Lai, and G A Taylor, and P J Blackshear
August 2014, Plant & cell physiology,
M J Thompson, and W S Lai, and G A Taylor, and P J Blackshear
March 2002, The Journal of biological chemistry,
M J Thompson, and W S Lai, and G A Taylor, and P J Blackshear
June 2012, Molecular and biochemical parasitology,
M J Thompson, and W S Lai, and G A Taylor, and P J Blackshear
November 2022, International journal of molecular sciences,
M J Thompson, and W S Lai, and G A Taylor, and P J Blackshear
February 2009, Journal of plant physiology,
M J Thompson, and W S Lai, and G A Taylor, and P J Blackshear
May 2001, Nucleic acids research,
M J Thompson, and W S Lai, and G A Taylor, and P J Blackshear
January 2015, Critical reviews in eukaryotic gene expression,
M J Thompson, and W S Lai, and G A Taylor, and P J Blackshear
September 1998, Genomics,
Copied contents to your clipboard!